File size: 3,533 Bytes
b3ee0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d605834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3ee0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
library_name: transformers
license: other
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: distilabel-reasoning-R1-Llama-70B-ja-train
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilabel-reasoning-R1-Llama-70B-ja-train

This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the distilabel-reasoning-R1-Llama-70B-ja-train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4519

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

```yaml
### model
model_name_or_path: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: /root/LLaMA-Factory/examples/deepspeed/ds_z2_config.json

### dataset
dataset: distilabel-reasoning-R1-Llama-70B-ja-train
template: qwen
cutoff_len: 4500
overwrite_cache: true
preprocessing_num_workers: 16
packing: true

### output
output_dir: /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train
logging_steps: 1
save_steps: 0.99999
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 1.0
lr_scheduler_type: cosine
warmup_ratio: 0.01
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 0.1
```

```shell
echo '{
  "distilabel-reasoning-R1-Llama-70B-ja-train": {
    "hf_hub_url": "lightblue/distilabel-reasoning-R1-Llama-70B-ja-train",
    "formatting": "sharegpt"
  }
}' > /root/LLaMA-Factory/data/dataset_info.json

cd /root/LLaMA-Factory && llamafactory-cli train /root/reasoning_train.yaml

rm -r /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train/checkpoint*
huggingface-cli upload lightblue/DeepSeek-R1-Distill-Qwen-7B-Japanese /root/train_outputs/DeepSeek-R1-Distill-Qwen-7B/distilabel-reasoning-R1-Llama-70B-ja-train
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.766         | 0.1087 | 5    | 0.5912          |
| 0.5873        | 0.2174 | 10   | 0.5282          |
| 0.3868        | 0.3261 | 15   | 0.4958          |
| 0.5101        | 0.4348 | 20   | 0.4761          |
| 0.4085        | 0.5435 | 25   | 0.4644          |
| 0.5561        | 0.6522 | 30   | 0.4578          |
| 0.4683        | 0.7609 | 35   | 0.4542          |
| 0.5055        | 0.8696 | 40   | 0.4526          |
| 0.5359        | 0.9783 | 45   | 0.4519          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3