--- library_name: transformers tags: [] --- # Model Overview This model was trained as a small-scale experiment to determine how easy it is to fine-tune [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) to work as a chatbot. The aim of this experiment was to find how intelligently and reliably Jamba can chat in both English and other languages if only QLoRA finetuned for a few hours. Initial subjective testing has shown that this model can chat reasonably well in both English and Japanese, so feel free to give it a try! ## Model Details - **Model type:** Joint Attention and Mamba (Jamba) - **License:** Apache 2.0 - **Context length:** 256K - **Knowledge cutoff date:** March 5, 2024 ## How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("kinokokoro/jamba_airoboros3.2_sharegpt4", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("kinokokoro/jamba_airoboros3.2_sharegpt4") input_text = """<|im_start|>system You are GPT-4, a helpful assistant. <|im_end|> <|im_start|>user 最近、運動すれば、すぐにめっちゃくっちゃ汗かいちゃうんだけど、どうしたらいいですか? <|im_end|> <|im_start|>assistant """ input_ids = tokenizer(input_text, return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=256, temperature=0.0)\ print(tokenizer.batch_decode([outputs[0][len(input_ids[0]):]])) # ['汗が出ることは、運動をするときに体温が上がり、体内の熱を外部に放出するための自然なメカニズムです。汗が出ることが多いことは、一般的には、体の温度調節機能が働いていることを意味します。しかし、汗が出ることが多すぎると、不快感や汗症などの問題が発生することがあります。以下に、汗が出ることが多い場合の対策を紹介します。\n\n1. 適切な服装を選ぶ: 汗が出ることが多い場合、軽量で透湿性の高い服を選ぶことが重要です。これにより、汗が体から外部に�'] ``` # Initial testing results # Training details The model was trained on 2 open source datasets (one multilingual) for one epoch on a A100 (80GB) x 4 environment for 3 hours. ## Training data * [jondurbin/airoboros-3.2](https://huggingface.co/datasets/jondurbin/airoboros-3.2) A ~59K example dataset of curated LLM tasks in English, primarily generated with GPT-4. This dataset has been used by some of the best performing open source LLMs in the world (e.g. [jondurbin/bagel-7b-v0.4](https://huggingface.co/jondurbin/bagel-7b-v0.4), [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO)) and contains a wide variety of tasks, so we hypothesized that this would lead to a multi-talented, accurate model. For this reason we chose this dataset was chosen for the bulk of our training data. Note: Each element in jondurbin/airoboros-3.2 already contains a system message. * [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset) (GPT-4 responses only) A ~6K example dataset of multilingual multi-turn chats between users and GPT-4. While jondurbin/airoboros-3.2 has deilvered good results for models previously, it sadly contains no (or seemingly very little) multilingual data. We are a Japanese AI company, so require an LLM to be able to output in Japanese too. Hence we also selected a small, seemingly high quality dataset of GPT-4 responses in many languages from the ShareGPT dataset. We chose to only select the GPT-4 responses as we wanted to keep our dataset as small and high quality as possible to maximise the efficiency of our training. Note: openchat/openchat_sharegpt4_dataset does not contain system messages, so we added 'You are GPT-4, a helpful assistant.' as our system message.
Data preparation code ```python import os import pandas as pd from datasets import load_dataset, Dataset, concatenate_datasets os.environ['HF_HOME'] = "/workspace/hf_home" os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = "1" boros_dataset = load_dataset("jondurbin/airoboros-3.2", split='train') gpt4_df = pd.read_json("https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json?download=true") gpt4_df["conversations"] = gpt4_df["items"].apply(lambda x: [{'from': 'system', 'value': 'You are GPT-4, a helpful assistant.'}] + x) gpt4_dataset = Dataset.from_pandas(gpt4_df[["conversations"]]) dataset = concatenate_datasets([gpt4_dataset, boros_dataset]).shuffle() dataset.select_columns(["conversations"]).to_json("/workspace/airoboros-3.2_plus_openchat_sharegpt4.json") ```
## Training The Jamba-v0.1 base model was trained for roughly 3 hours in a A100 (80GB) x 4 environment on the Azure cloud (Standard_NC96ads_A100_v4). Our training harness was Axolotl, with the following config as our training parameters:
Training config ```yaml base_model: ai21labs/Jamba-v0.1 trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: /workspace/airoboros-3.2_plus_openchat_sharegpt4.json ds_type: json type: sharegpt conversation: chatml dataset_prepared_path: val_set_size: 0.01 output_dir: ./airoboros-3.2_plus_openchat_sharegpt4_one_epoch sequence_len: 6000 sample_packing: true pad_to_sequence_len: false eval_sample_packing: true use_wandb: true wandb_project: axolotl wandb_entity: peterd wandb_name: airoboros-3.2_plus_openchat_sharegpt4 adapter: qlora lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true low_cpu_mem_usage: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 5 saves_per_epoch: 5 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 special_tokens: ```
[Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
Training graphs ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/umxTIsNRHUtKS_kL81Uyf.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/mpuCoL99rxX8RCgXH1CJo.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/5FvwYNdte-bgzEvcvFO8I.png)

# Developers Lead developer - Peter Devine [ptrdvn](https://huggingface.co/ptrdvn) Administrative supervisor - Shunichi Taniguchi [ptrdvn](https://huggingface.co/ptrdvn)