ptrdvn commited on
Commit
9ae5ab6
·
1 Parent(s): f685e32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md CHANGED
@@ -1,3 +1,93 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # Dataset
5
+
6
+ Japanese subset of the mC4 dataset
7
+
8
+ # Training
9
+
10
+ Trained for 3000 steps on top of the MPT 7b checkpoint mosaicml/mpt-7b
11
+
12
+ # How to load
13
+
14
+ Before running this model, please install the following pip package:
15
+
16
+ ```bash
17
+ pip install einops
18
+ ```
19
+
20
+ To run this model, you may need to load it in a lower precision in order for it to fit onto your GPU. We found for a T4 GPU, it requires loading the model in 8-bit precision. To load the model in 8-bit or 4-bit, please install the following pip packages:
21
+
22
+ ```bash
23
+ pip install bitsandbytes accelerate
24
+ ```
25
+
26
+ Caution - you will also need enough RAM to load the model. We estimate loading this model requires ~30GB.
27
+
28
+ <details>
29
+ <summary><b>Auto type</b></summary>
30
+
31
+
32
+
33
+ ```python
34
+ from transformers import AutoModelForCausalLM
35
+
36
+ model_name = "lightblue/japanese-mpt-7b"
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ model_name,
39
+ torch_dtype='auto',
40
+ trust_remote_code=True
41
+ )
42
+ ```
43
+
44
+ </details>
45
+ <details>
46
+ <summary><b>In 8 bit</b></summary>
47
+
48
+
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM
52
+
53
+ model_name = "lightblue/japanese-mpt-7b"
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ model_name,
56
+ torch_dtype='auto',
57
+ load_in_8bit=True,
58
+ trust_remote_code=True
59
+ )
60
+ ```
61
+
62
+ </details>
63
+
64
+ <details>
65
+ <summary><b>In 4 bit</b></summary>
66
+
67
+
68
+
69
+ ```python
70
+ from transformers import AutoModelForCausalLM
71
+
72
+ model_name = "lightblue/japanese-mpt-7b"
73
+ model = AutoModelForCausalLM.from_pretrained(
74
+ model_name,
75
+ torch_dtype='auto',
76
+ load_in_4bit=True,
77
+ trust_remote_code=True
78
+ )
79
+ ```
80
+
81
+ </details>
82
+
83
+
84
+ # How to use
85
+ ```python
86
+ from transformers import AutoTokenizer, pipeline
87
+
88
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
89
+
90
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
91
+
92
+ pipe("こんにちは", temperature=0, do_sample=False, return_full_text=False, max_new_tokens=32)
93
+ ```