Text Generation
Transformers
Safetensors
qwen2
reranker
conversational
text-generation-inference
ptrdvn commited on
Commit
22f1a0c
·
verified ·
1 Parent(s): 1155b77

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -33
README.md CHANGED
@@ -183,7 +183,7 @@ def make_reranker_input(t, q):
183
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
184
 
185
  def make_reranker_inference_conversation(context, question):
186
- system_message = "Given a query and a piece of text, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
187
 
188
  return [
189
  {"role": "system", "content": system_message},
@@ -237,7 +237,7 @@ def make_reranker_input(t, q):
237
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
238
 
239
  def make_reranker_inference_conversation(context, question):
240
- system_message = "Given a query and a piece of text, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
241
 
242
  return [
243
  {"role": "system", "content": system_message},
@@ -302,7 +302,7 @@ def make_reranker_input(t, q):
302
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
303
 
304
  def make_reranker_inference_conversation(context, question):
305
- system_message = "Given a query and a piece of text, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
306
 
307
  return [
308
  {"role": "system", "content": system_message},
@@ -345,36 +345,6 @@ print(expected_vals)
345
  </details></li>
346
  </ul>
347
 
348
- # Evaluation
349
-
350
- We perform an evaluation on 9 datasets from the [BEIR benchmark](https://github.com/beir-cellar/beir) that none of the evaluated models have been trained upon (to our knowledge).
351
-
352
- * Arguana
353
- * Dbpedia-entity
354
- * Fiqa
355
- * NFcorpus
356
- * Scidocs
357
- * Scifact
358
- * Trec-covid-v2
359
- * Vihealthqa
360
- * Webis-touche2020
361
-
362
- We evaluate on a subset of all queries (the first 250) to save evaluation time.
363
-
364
- We find that our model performs similarly or better than many of the state-of-the-art reranker models in our evaluation, without compromising on inference speed.
365
-
366
- We make our evaluation code and results available [on our Github](https://github.com/lightblue-tech/lb-reranker/blob/main/run_bier.ipynb).
367
-
368
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/xkNzCABFUmU7UmDXUduiz.png)
369
-
370
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/P-XCA3TGHqDSX8k6c4hCE.png)
371
-
372
- As we can see, this reranker attains greater IR evaluation metrics compared to the two benchmarks we include for all positions apart from @1.
373
-
374
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/puhhWseBOcIyOEdW4L-B0.png)
375
-
376
- We also show that our model is, on average, faster than the BGE reranker v2.
377
-
378
  # License
379
 
380
  We share this model under an Apache 2.0 license.
 
183
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
184
 
185
  def make_reranker_inference_conversation(context, question):
186
+ system_message = "Given a piece of text and a query, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
187
 
188
  return [
189
  {"role": "system", "content": system_message},
 
237
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
238
 
239
  def make_reranker_inference_conversation(context, question):
240
+ system_message = "Given a piece of text and a query, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
241
 
242
  return [
243
  {"role": "system", "content": system_message},
 
302
  return f"<<<Context>>>\n{t}\n\n<<<Query>>>\n{q}"
303
 
304
  def make_reranker_inference_conversation(context, question):
305
+ system_message = "Given a piece of text and a query, output a score of 1-7 based on how related the query is to the text. 1 means least related and 7 is most related."
306
 
307
  return [
308
  {"role": "system", "content": system_message},
 
345
  </details></li>
346
  </ul>
347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
  # License
349
 
350
  We share this model under an Apache 2.0 license.