--- license: apache-2.0 tags: - LoRA - Reranker - Vidore --- # MonoQwen2-VL-2B-LoRA-Reranker ## Model Overview The **MonoQwen2-VL-2B-LoRA-Reranker** is a LoRA fine-tuned version of the Qwen2-VL-2B model, optimized for reranking image-query relevance. ## How to Use the Model Below is a quick example to rerank a single image against a user query using this model: ```python import torch from PIL import Image from transformers import AutoProcessor, Qwen2VLForConditionalGeneration # Load processor and model processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") model = Qwen2VLForConditionalGeneration.from_pretrained( "lightonai/MonoQwen2-VL-2B-LoRA-Reranker", device_map="auto", # attn_implementation="flash_attention_2", # torch_dtype=torch.bfloat16, ) # Define query and load image query = "Is this your query about a document ?" image_path = "your/path/to/image.png" image = Image.open(image_path) # Construct the prompt and prepare input prompt = ( "Assert the relevance of the previous image document to the following query, " "answer True or False. The query is: {query}" ).format(query=query) messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompt}, ], } ] # Apply chat template and tokenize text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt").to("cuda") # Run inference to obtain logits with torch.no_grad(): outputs = model(**inputs) logits_for_last_token = outputs.logits[:, -1, :] # Convert tokens and calculate relevance score true_token_id = processor.tokenizer.convert_tokens_to_ids("True") false_token_id = processor.tokenizer.convert_tokens_to_ids("False") relevance_score = torch.softmax(logits_for_last_token[:, [true_token_id, false_token_id]], dim=-1) # Extract and display probabilities true_prob = relevance_score[0, 0].item() false_prob = relevance_score[0, 1].item() print(f"True probability: {true_prob:.4f}, False probability: {false_prob:.4f}") ``` This example demonstrates how to use the model to assess the relevance of an image with respect to a query. It outputs the probability that the image is relevant ("True") or not relevant ("False"). ## Performance Metrics The model has been evaluated on [ViDoRe Benchmark](https://huggingface.co/spaces/vidore/vidore-leaderboard), by retrieving 10 elements with [MrLight_dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and reranking them. The table below summarizes its `ndcg@5` scores: | Dataset | NDCG@5 Before Reranking | NDCG@5 After Reranking | |---------------------------------------------------|--------------------------|------------------------| | **Mean** | 85.8 | **90.5** | | vidore/arxivqa_test_subsampled | 85.6 | 89.01 | | vidore/docvqa_test_subsampled | 57.1 | 59.71 | | vidore/infovqa_test_subsampled | 88.1 | 93.49 | | vidore/tabfquad_test_subsampled | 93.1 | 95.96 | | vidore/shiftproject_test | 82.0 | 92.98 | | vidore/syntheticDocQA_artificial_intelligence_test| 97.5 | 100.00 | | vidore/syntheticDocQA_energy_test | 92.9 | 97.65 | | vidore/syntheticDocQA_government_reports_test | 96.0 | 98.04 | | vidore/syntheticDocQA_healthcare_industry_test | 96.4 | 99.27 | | vidore/tatdqa_test | 69.4 | 78.98 | ## License This LoRA model is licensed under the Apache 2.0 license.