DanielHesslow
commited on
Commit
•
5b0200e
1
Parent(s):
ef4cd2d
add model
Browse files- config.json +9 -2
- pytorch_model.bin +2 -2
- rita_configuration.py +32 -0
- rita_modeling.py +250 -0
config.json
CHANGED
@@ -1,9 +1,16 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"RITAModel"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"bos_token_id": [
|
6 |
-
|
|
|
|
|
7 |
],
|
8 |
"d_feedforward": 6144,
|
9 |
"d_model": 1536,
|
@@ -14,6 +21,6 @@
|
|
14 |
"num_heads": 24,
|
15 |
"num_layers": 24,
|
16 |
"torch_dtype": "float32",
|
17 |
-
"transformers_version": "4.
|
18 |
"vocab_size": 128
|
19 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Seledorn/RITA_l",
|
3 |
"architectures": [
|
4 |
"RITAModel"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "rita_configuration.RITAConfig",
|
8 |
+
"AutoModel": "rita_modeling.RITAModel"
|
9 |
+
},
|
10 |
"bos_token_id": [
|
11 |
+
[
|
12 |
+
50256
|
13 |
+
]
|
14 |
],
|
15 |
"d_feedforward": 6144,
|
16 |
"d_model": 1536,
|
|
|
21 |
"num_heads": 24,
|
22 |
"num_layers": 24,
|
23 |
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.18.0",
|
25 |
"vocab_size": 128
|
26 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7bb9484e200005f1a044428b91b4112c3cc3ad1c98c94278c84001981f69066
|
3 |
+
size 2720752715
|
rita_configuration.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
from transformers.utils import logging
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
class RITAConfig(PretrainedConfig):
|
8 |
+
model_type = "codegen"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
vocab_size=128,
|
13 |
+
d_model=768,
|
14 |
+
num_layers=12,
|
15 |
+
max_seq_len=1024,
|
16 |
+
num_heads=12,
|
17 |
+
dropout=0.,
|
18 |
+
ff_ratio=4,
|
19 |
+
bos_token_id=50256, # TODO
|
20 |
+
eos_token_id=50256, # TODO
|
21 |
+
**kwargs,
|
22 |
+
):
|
23 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
24 |
+
self.vocab_size = vocab_size
|
25 |
+
self.d_model = d_model
|
26 |
+
self.num_heads = num_heads
|
27 |
+
self.d_feedforward = d_model*ff_ratio
|
28 |
+
self.num_layers = num_layers
|
29 |
+
self.max_seq_len=max_seq_len
|
30 |
+
self.dropout = dropout
|
31 |
+
self.bos_token_id=bos_token_id,
|
32 |
+
self.eos_token_id=eos_token_id
|
rita_modeling.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
BaseModelOutputWithPast,
|
13 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
+
CausalLMOutputWithCrossAttentions,
|
15 |
+
CausalLMOutputWithPast,
|
16 |
+
)
|
17 |
+
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from .rita_configuration import RITAConfig
|
22 |
+
import torch.nn.functional as F
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
@torch.jit.script
|
26 |
+
def RITA_gelu(hidden_states):
|
27 |
+
return hidden_states * 0.5 * (1.0 + torch.tanh(0.79788456 * hidden_states * (1 + 0.044715 * hidden_states * hidden_states)))
|
28 |
+
|
29 |
+
class RITAGELU(nn.Module):
|
30 |
+
def __init__(self):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
def forward(self, hidden_states):
|
34 |
+
return RITA_gelu(hidden_states)
|
35 |
+
|
36 |
+
def rotate_half(x):
|
37 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
38 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1)
|
39 |
+
|
40 |
+
class RotaryEmbedding(nn.Module):
|
41 |
+
def __init__(self, config):
|
42 |
+
super().__init__()
|
43 |
+
assert config.d_model % config.num_heads == 0
|
44 |
+
|
45 |
+
self.d_model = config.d_model
|
46 |
+
self.num_heads = config.num_heads
|
47 |
+
self.max_seq_len = config.max_seq_len
|
48 |
+
|
49 |
+
head_dim = self.d_model // self.num_heads
|
50 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
51 |
+
self.register_buffer('inv_freq', inv_freq)
|
52 |
+
self.seq_len_cached = None
|
53 |
+
self.cos_cached = None
|
54 |
+
self.sin_cached = None
|
55 |
+
|
56 |
+
def forward(self, x: torch.FloatTensor, seq_dim=1) -> torch.FloatTensor:
|
57 |
+
seq_len = x.shape[seq_dim]
|
58 |
+
if seq_len != self.seq_len_cached:
|
59 |
+
self.seq_len_cached = seq_len
|
60 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
61 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
62 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
63 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
64 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
65 |
+
return self.cos_cached, self.sin_cached
|
66 |
+
|
67 |
+
def apply_rotary_pos_emb(self, q, k, cos, sin):
|
68 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
69 |
+
|
70 |
+
|
71 |
+
class SelfAttention(nn.Module):
|
72 |
+
"""Implementation of MultiHeadAttention following `Karpathy's MinGPT <https://github.com/karpathy/minGPT>`_.
|
73 |
+
modified to use rotary embeddings.
|
74 |
+
|
75 |
+
Parameters
|
76 |
+
----------
|
77 |
+
d_model: int,
|
78 |
+
total dimension of the model.
|
79 |
+
num_heads: int,
|
80 |
+
number of parallel attention heads.
|
81 |
+
num_layers: int,
|
82 |
+
number of layers in the model, used for the Megatron-like init.
|
83 |
+
rotaty_embedding: Optional[Block], default None,
|
84 |
+
a RotaryEmbedding Block to add positionnal information in Queries and Keys
|
85 |
+
dropout: float, default 0.1,
|
86 |
+
amount of dropout on the attention weights.
|
87 |
+
sigma: float, default 0.02,
|
88 |
+
standard deviation used for the init.
|
89 |
+
trainable: bool, default True,
|
90 |
+
if False, the Module parameters will be hidden from the optimizer.
|
91 |
+
"""
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
d_model: int,
|
96 |
+
num_heads: int,
|
97 |
+
num_layers: int,
|
98 |
+
rotary_embedding= None,
|
99 |
+
dropout: float = 0.1,
|
100 |
+
sigma=0.02,
|
101 |
+
use_cache: bool = False,
|
102 |
+
bias=True,
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
assert d_model % num_heads == 0
|
106 |
+
self.d_model = d_model
|
107 |
+
self.num_heads = num_heads
|
108 |
+
self.head_dim = self.d_model // self.num_heads
|
109 |
+
self.num_layers = num_layers
|
110 |
+
self.dropout = dropout
|
111 |
+
self.sigma = sigma
|
112 |
+
self.bias = bias
|
113 |
+
|
114 |
+
# key, query, value projections for all heads
|
115 |
+
self.key = nn.Linear(d_model, d_model, bias=bias)
|
116 |
+
self.query = nn.Linear(d_model, d_model, bias=bias)
|
117 |
+
self.value = nn.Linear(d_model, d_model, bias=bias)
|
118 |
+
# regularization
|
119 |
+
self.attn_drop = nn.Dropout(dropout)
|
120 |
+
self.resid_drop = nn.Dropout(dropout)
|
121 |
+
# output projection
|
122 |
+
self.proj = nn.Linear(d_model, d_model, bias=bias)
|
123 |
+
|
124 |
+
self.rotary_embedding = rotary_embedding
|
125 |
+
self.layer_id = None # will be set by the Transformer itself
|
126 |
+
self.use_cache = use_cache
|
127 |
+
self.qkv = None
|
128 |
+
self.bias = bias
|
129 |
+
|
130 |
+
def forward(
|
131 |
+
self,
|
132 |
+
x,
|
133 |
+
attn_mask: Optional[torch.BoolTensor] = None,
|
134 |
+
padding_mask: Optional[torch.BoolTensor] = None,
|
135 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
136 |
+
|
137 |
+
N, L, D = x.size() # Batch_size, Context_size, d_model
|
138 |
+
|
139 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
140 |
+
k = (
|
141 |
+
self.key(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
|
142 |
+
) # (N, nh, L, hs)
|
143 |
+
q = (
|
144 |
+
self.query(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
|
145 |
+
) # (N, nh, L, hs)
|
146 |
+
v = (
|
147 |
+
self.value(x).view(N, L, self.num_heads, D // self.num_heads).transpose(1, 2)
|
148 |
+
) # (N, nh, L, hs)
|
149 |
+
|
150 |
+
if self.rotary_embedding is not None:
|
151 |
+
cos, sin = self.rotary_embedding(x)
|
152 |
+
q, k = self.rotary_embedding.apply_rotary_pos_emb(q, k, cos, sin)
|
153 |
+
|
154 |
+
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
|
155 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
156 |
+
|
157 |
+
if attn_mask is not None:
|
158 |
+
att[:,:,-L:, -L: ].masked_fill_(attn_mask.view(1, 1, L, L), float("-inf"))
|
159 |
+
|
160 |
+
att = (
|
161 |
+
att.transpose(0, 2)
|
162 |
+
.masked_fill(padding_mask.view(1, 1, N, L), float("-inf"))
|
163 |
+
.transpose(0, 2)
|
164 |
+
if padding_mask is not None
|
165 |
+
else att
|
166 |
+
)
|
167 |
+
|
168 |
+
att = F.softmax(att, dim=-1)
|
169 |
+
att = self.attn_drop(att)
|
170 |
+
y = att @ v # (N, nh, L, L) x (N, nh, L, hs) -> (N, nh, L, hs)
|
171 |
+
y = (
|
172 |
+
y.transpose(1, 2).contiguous().view(N, L, D)
|
173 |
+
) # re-assemble all head outputs side by side
|
174 |
+
|
175 |
+
# output projection
|
176 |
+
y = self.resid_drop(self.proj(y))
|
177 |
+
return y
|
178 |
+
|
179 |
+
class DecoderLayer(nn.Module):
|
180 |
+
"""Transformer block containing the self-attention module and the feedfoward module."""
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self, config
|
184 |
+
):
|
185 |
+
super().__init__()
|
186 |
+
self.self_attention = SelfAttention(config.d_model, config.num_heads, config.dropout, rotary_embedding=RotaryEmbedding(config))
|
187 |
+
self.attn_norm = nn.LayerNorm(config.d_model)
|
188 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
189 |
+
|
190 |
+
self.mlp = nn.Sequential(
|
191 |
+
nn.Linear(config.d_model, config.d_feedforward, bias=True),
|
192 |
+
RITAGELU(),
|
193 |
+
nn.Linear(config.d_feedforward, config.d_model, bias=True),
|
194 |
+
)
|
195 |
+
self.mlp_norm = nn.LayerNorm(config.d_model)
|
196 |
+
self.mlp_dropout = nn.Dropout(config.dropout)
|
197 |
+
|
198 |
+
def forward(
|
199 |
+
self,
|
200 |
+
x: torch.FloatTensor,
|
201 |
+
attn_mask: torch.BoolTensor,
|
202 |
+
padding_mask: Optional[torch.BoolTensor] = None,
|
203 |
+
) -> torch.FloatTensor:
|
204 |
+
y = self.attn_norm(x)
|
205 |
+
y = self.self_attention(y, attn_mask=attn_mask, padding_mask=padding_mask)
|
206 |
+
x = x + self.attn_dropout(y)
|
207 |
+
|
208 |
+
y = self.mlp_norm(x)
|
209 |
+
y = self.mlp(y)
|
210 |
+
x = x + self.mlp_dropout(y)
|
211 |
+
return x
|
212 |
+
|
213 |
+
class RITAModel(PreTrainedModel):
|
214 |
+
config_class = RITAConfig
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
config
|
218 |
+
):
|
219 |
+
super().__init__(config)
|
220 |
+
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
|
221 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
|
222 |
+
self.final_norm = nn.LayerNorm(config.d_model)
|
223 |
+
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
|
224 |
+
|
225 |
+
def forward(self, ids, attn_mask=None, padding_mask=None, return_hidden=False) -> torch.FloatTensor:
|
226 |
+
x = self.embedding(ids) # N x L x D
|
227 |
+
if attn_mask == None:
|
228 |
+
attn_mask = (torch.triu(torch.ones(ids.size(1), ids.size(1))) == 0).transpose(0, 1).contiguous()
|
229 |
+
for layer in self.layers:
|
230 |
+
x = layer(x, attn_mask=attn_mask, padding_mask=padding_mask)
|
231 |
+
x = self.final_norm(x) # N x L x D
|
232 |
+
|
233 |
+
if return_hidden:
|
234 |
+
return x
|
235 |
+
else:
|
236 |
+
return self.projector(x)
|
237 |
+
|
238 |
+
#Some common HF functions.
|
239 |
+
def get_input_embeddings(self):
|
240 |
+
return self.embedding
|
241 |
+
|
242 |
+
def set_input_embeddings(self, new_embeddings):
|
243 |
+
self.embedding = new_embeddings
|
244 |
+
|
245 |
+
def get_output_embeddings(self):
|
246 |
+
return self.projector
|
247 |
+
|
248 |
+
def set_output_embeddings(self, new_projector):
|
249 |
+
return new_projector
|
250 |
+
|