DanielHesslow commited on
Commit
f56621c
1 Parent(s): 9f2547c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: protein
3
+ tags:
4
+ - protein
5
+ datasets:
6
+ - uniref-100
7
+ ---
8
+
9
+ # RITA-L
10
+
11
+ RITA is a family of autoregressive protein models, developed in collaboration between Lighton, Harvard and Oxford.
12
+
13
+
14
+
15
+ Model | #Params | d_model | layers | lm loss uniref-100
16
+ --- | --- | --- | --- | --- |
17
+ [Small](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31
18
+ [Medium](https://huggingface.co/lightonai/RITA_l) | 300M | 1024 | 24 | 2.01
19
+ [**Large**](https://huggingface.co/lightonai/RITA_m)| 680M | 1536 | 24 | 1.82
20
+ [XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70
21
+
22
+
23
+
24
+ # Usage
25
+
26
+ Instantiate a model like so:
27
+
28
+ from transformers import AutoModel, AutoModelForCausalLM
29
+ model = AutoModelForCausalLM.from_pretrained("Seledorn/RITA_l, trust_remote_code=True")
30
+ tokenizer = AutoTokenizer.from_pretrained("Seledorn/RITA_l")
31
+
32
+ for generation use we support pipelines:
33
+
34
+
35
+ rita_gen = pipeline('text-generation', model=model, tokenizer = tokenizer)
36
+ sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2)
37
+ for seq in sequences:
38
+ print(f"seq: {seq['generated_text'].replace(' ', '')}")
39
+