Upload ResNet10
Browse files- config.json +7 -1
- model.safetensors +3 -0
- modeling_resnet.py +214 -0
config.json
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
2 |
"auto_map": {
|
3 |
-
"AutoConfig": "configuration_resnet.ResNet10Config"
|
|
|
4 |
},
|
5 |
"depths": [
|
6 |
1,
|
@@ -18,5 +23,6 @@
|
|
18 |
],
|
19 |
"model_type": "resnet10",
|
20 |
"num_channels": 3,
|
|
|
21 |
"transformers_version": "4.48.1"
|
22 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lilkm/resnet10",
|
3 |
+
"architectures": [
|
4 |
+
"ResNet10"
|
5 |
+
],
|
6 |
"auto_map": {
|
7 |
+
"AutoConfig": "lilkm/resnet10--configuration_resnet.ResNet10Config",
|
8 |
+
"AutoModel": "modeling_resnet.ResNet10"
|
9 |
},
|
10 |
"depths": [
|
11 |
1,
|
|
|
23 |
],
|
24 |
"model_type": "resnet10",
|
25 |
"num_channels": 3,
|
26 |
+
"torch_dtype": "float32",
|
27 |
"transformers_version": "4.48.1"
|
28 |
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10f7d125770aa256bd45ec9e4f586ca1157e29380fa1306d14a025664ae173d0
|
3 |
+
size 19626736
|
modeling_resnet.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# -----------------------------------------------------------------------------
|
15 |
+
|
16 |
+
from typing import Optional
|
17 |
+
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch import Tensor
|
20 |
+
from transformers import PreTrainedModel
|
21 |
+
from transformers.activations import ACT2FN
|
22 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
23 |
+
|
24 |
+
from .configuration_resnet import ResNet10Config
|
25 |
+
|
26 |
+
import math
|
27 |
+
|
28 |
+
|
29 |
+
class JaxStyleMaxPool(nn.Module):
|
30 |
+
def forward(self, x):
|
31 |
+
x = nn.functional.pad(x, (0, 1, 0, 1), value=-float('inf')) # Pad right/bottom by 1 to match JAX's maxpooling padding="SAME"
|
32 |
+
return nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
|
33 |
+
|
34 |
+
|
35 |
+
class JaxStyleConv2d(nn.Module):
|
36 |
+
"""Mimics JAX's Conv2D with padding='SAME' for exact parity."""
|
37 |
+
|
38 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=False):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
# Ensure kernel_size and stride are tuples
|
42 |
+
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size)
|
43 |
+
self.stride = stride if isinstance(stride, tuple) else (stride, stride)
|
44 |
+
|
45 |
+
self.conv = nn.Conv2d(
|
46 |
+
in_channels, out_channels,
|
47 |
+
kernel_size=self.kernel_size,
|
48 |
+
stride=self.stride,
|
49 |
+
padding=0, # No padding
|
50 |
+
bias=bias
|
51 |
+
)
|
52 |
+
|
53 |
+
def _compute_padding(self, input_height, input_width):
|
54 |
+
"""Calculate asymmetric padding to match JAX's 'SAME' behavior."""
|
55 |
+
|
56 |
+
# Compute padding needed for height and width
|
57 |
+
pad_h = max(0, (math.ceil(input_height / self.stride[0]) - 1) * self.stride[0] + self.kernel_size[0] - input_height)
|
58 |
+
pad_w = max(0, (math.ceil(input_width / self.stride[1]) - 1) * self.stride[1] + self.kernel_size[1] - input_width)
|
59 |
+
|
60 |
+
# Asymmetric padding (JAX-style: more padding on the bottom/right if needed)
|
61 |
+
pad_top = pad_h // 2
|
62 |
+
pad_bottom = pad_h - pad_top
|
63 |
+
pad_left = pad_w // 2
|
64 |
+
pad_right = pad_w - pad_left
|
65 |
+
|
66 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
"""Apply asymmetric padding before convolution."""
|
70 |
+
_, _, h, w = x.shape
|
71 |
+
|
72 |
+
# Compute asymmetric padding
|
73 |
+
pad_left, pad_right, pad_top, pad_bottom = self._compute_padding(h, w)
|
74 |
+
x = nn.functional.pad(x, (pad_left, pad_right, pad_top, pad_bottom))
|
75 |
+
|
76 |
+
return self.conv(x)
|
77 |
+
|
78 |
+
|
79 |
+
class BasicBlock(nn.Module):
|
80 |
+
def __init__(self, in_channels, out_channels, activation, stride=1, norm_groups=4):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
self.conv1 = JaxStyleConv2d(
|
84 |
+
in_channels,
|
85 |
+
out_channels,
|
86 |
+
kernel_size=3,
|
87 |
+
stride=stride,
|
88 |
+
bias=False,
|
89 |
+
)
|
90 |
+
self.norm1 = nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels)
|
91 |
+
self.act1 = ACT2FN[activation]
|
92 |
+
self.act2 = ACT2FN[activation]
|
93 |
+
self.conv2 = JaxStyleConv2d(out_channels, out_channels, kernel_size=3, stride=1, bias=False)
|
94 |
+
self.norm2 = nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels)
|
95 |
+
|
96 |
+
self.shortcut = None
|
97 |
+
if in_channels != out_channels:
|
98 |
+
self.shortcut = nn.Sequential(
|
99 |
+
JaxStyleConv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
100 |
+
nn.GroupNorm(num_groups=norm_groups, num_channels=out_channels),
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
identity = x
|
105 |
+
|
106 |
+
out = self.conv1(x)
|
107 |
+
out = self.norm1(out)
|
108 |
+
out = self.act1(out)
|
109 |
+
|
110 |
+
out = self.conv2(out)
|
111 |
+
out = self.norm2(out)
|
112 |
+
|
113 |
+
if self.shortcut is not None:
|
114 |
+
identity = self.shortcut(identity)
|
115 |
+
|
116 |
+
out += identity
|
117 |
+
return self.act2(out)
|
118 |
+
|
119 |
+
|
120 |
+
class Encoder(nn.Module):
|
121 |
+
def __init__(self, config: ResNet10Config):
|
122 |
+
super().__init__()
|
123 |
+
self.config = config
|
124 |
+
self.stages = nn.ModuleList([])
|
125 |
+
|
126 |
+
for i, size in enumerate(self.config.hidden_sizes):
|
127 |
+
if i == 0:
|
128 |
+
self.stages.append(
|
129 |
+
BasicBlock(
|
130 |
+
self.config.embedding_size,
|
131 |
+
size,
|
132 |
+
activation=self.config.hidden_act,
|
133 |
+
)
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
self.stages.append(
|
137 |
+
BasicBlock(
|
138 |
+
self.config.hidden_sizes[i - 1],
|
139 |
+
size,
|
140 |
+
activation=self.config.hidden_act,
|
141 |
+
stride=2,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
def forward(self, hidden_state: Tensor, output_hidden_states: bool = False) -> BaseModelOutputWithNoAttention:
|
146 |
+
hidden_states = () if output_hidden_states else None
|
147 |
+
|
148 |
+
for stage in self.stages:
|
149 |
+
if output_hidden_states:
|
150 |
+
hidden_states = hidden_states + (hidden_state,)
|
151 |
+
|
152 |
+
hidden_state = stage(hidden_state)
|
153 |
+
|
154 |
+
if output_hidden_states:
|
155 |
+
hidden_states = hidden_states + (hidden_state,)
|
156 |
+
|
157 |
+
return BaseModelOutputWithNoAttention(
|
158 |
+
last_hidden_state=hidden_state,
|
159 |
+
hidden_states=hidden_states,
|
160 |
+
)
|
161 |
+
|
162 |
+
class JaxStyleMaxPool(nn.Module):
|
163 |
+
def forward(self, x):
|
164 |
+
x = nn.functional.pad(x, (0, 1, 0, 1), value=-float('inf')) # Pad right/bottom by 1
|
165 |
+
return nn.MaxPool2d(kernel_size=3, stride=2, padding=0)(x)
|
166 |
+
|
167 |
+
class ResNet10(PreTrainedModel):
|
168 |
+
config_class = ResNet10Config
|
169 |
+
|
170 |
+
def __init__(self, config):
|
171 |
+
super().__init__(config)
|
172 |
+
|
173 |
+
self.embedder = nn.Sequential(
|
174 |
+
nn.Conv2d(
|
175 |
+
self.config.num_channels,
|
176 |
+
self.config.embedding_size,
|
177 |
+
kernel_size=7,
|
178 |
+
stride=2,
|
179 |
+
padding=3,
|
180 |
+
bias=False,
|
181 |
+
),
|
182 |
+
# The original code has a small trick -
|
183 |
+
# https://github.com/rail-berkeley/hil-serl/blob/main/serl_launcher/serl_launcher/vision/resnet_v1.py#L119
|
184 |
+
# class MyGroupNorm(nn.GroupNorm):
|
185 |
+
# def __call__(self, x):
|
186 |
+
# if x.ndim == 3:
|
187 |
+
# x = x[jnp.newaxis]
|
188 |
+
# x = super().__call__(x)
|
189 |
+
# return x[0]
|
190 |
+
# else:
|
191 |
+
# return super().__call__(x)
|
192 |
+
nn.GroupNorm(num_groups=4, eps=1e-5, num_channels=self.config.embedding_size),
|
193 |
+
ACT2FN[self.config.hidden_act],
|
194 |
+
JaxStyleMaxPool(),
|
195 |
+
)
|
196 |
+
|
197 |
+
self.encoder = Encoder(self.config)
|
198 |
+
|
199 |
+
def forward(self, x: Tensor, output_hidden_states: Optional[bool] = None) -> BaseModelOutputWithNoAttention:
|
200 |
+
output_hidden_states = (
|
201 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
202 |
+
)
|
203 |
+
embedding_output = self.embedder(x)
|
204 |
+
encoder_outputs = self.encoder(embedding_output, output_hidden_states=output_hidden_states)
|
205 |
+
|
206 |
+
return BaseModelOutputWithNoAttention(
|
207 |
+
last_hidden_state=encoder_outputs.last_hidden_state,
|
208 |
+
hidden_states=encoder_outputs.hidden_states,
|
209 |
+
)
|
210 |
+
|
211 |
+
def print_model_hash(self):
|
212 |
+
print("Model parameters hashes:")
|
213 |
+
for name, param in self.named_parameters():
|
214 |
+
print(name, param.sum())
|