--- license: apache-2.0 inference: false language: ja --- # japanese-large-lm-3.6b-instruction-sft-4bit-128g-actorder_False This repository provides a 3.6B parameters Japanese language **quantized** model, fine-tuned and trained by [LINE Corporation](https://linecorp.com/ja/). ## For Japanese 詳細な説明や実験に関しては「[【インターンレポート】量子化による大規模言語モデル軽量化の効果測定](https://engineering.linecorp.com/ja/blog/quantization-lightweighting-llms)」をご覧ください。 ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft", use_fast=False) model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-3.6b-instruction-sft-4bit-128g-actorder_False") generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) input_text = """四国の県名を全て列挙してください。""" text = generator( f"ユーザー: {input_text}\nシステム: ", max_length = 256, do_sample = True, temperature = 0.7, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, num_beams = 1, pad_token_id = tokenizer.pad_token_id, num_return_sequences = 1, ) print(text) # [{'generated_text': 'ユーザー: 四国の県名を全て列挙してください。\nシステム: 高知県、徳島県、香川県、愛媛県'}] ``` ## Tokenization We use a sentencepiece tokenizer with a unigram language model and byte-fallback. We **do not** apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)