--- license: apache-2.0 datasets: - wikipedia - mc4 - cc100 - oscar language: - ja --- # japanese-large-lm-3.6b This repository provides a 3.6B parameters Japanese language model, trained by [LINE Corporation](https://linecorp.com/ja/). ## How to use ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed model = AutoModelForCausalLM.from_pretrained("line-corporation/japanese-large-lm-3.6b", torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained("line-corporation/japanese-large-lm-3.6b", use_fast=False) generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) set_seed(101) text = generator( "おはようございます、今日の天気は", max_length=30, do_sample=True, pad_token_id=tokenizer.pad_token_id, num_return_sequences=5, ) for t in text: print(t) # 下記は生成される出力の例 # [{'generated_text': 'おはようございます、今日の天気は雨模様ですね。梅雨のこの時期の 朝は洗濯物が乾きにくいなど、主婦にとっては悩みどころですね。 では、'}, # {'generated_text': 'おはようございます、今日の天気は晴れ。 気温は8°C位です。 朝晩は結構冷え込むようになりました。 寒くなってくると、...'}, # {'generated_text': 'おはようございます、今日の天気は曇りです。 朝起きたら雪が軽く積もっていた。 寒さもそれほどでもありません。 日中は晴れるみたいですね。'}, # {'generated_text': 'おはようございます、今日の天気は☁のち☀です。 朝の気温5°C、日中も21°Cと 暖かい予報です'}, # {'generated_text': 'おはようございます、今日の天気は晴天ですが涼しい1日です、気温は午後になり低くなり25°Cくらい、風も強いようですので、'}] ``` ## Model architecture | Model | Vocab size | Architecture | Position type | Layers | Hidden dim | Attention heads | | :---: | :--------: | :----------- | :-----------: | :----: | :--------: | :-------------: | | 1.7B | 51200 | GPT2 | Absolute | 24 | 2304 | 24 | | 3.6B | 51200 | GPTNeoX | RoPE | 30 | 3072 | 32 | ## Training Corpus Our training corpus consists of the Japanese portions of publicly available corpus such as C4, CC-100, and Oscar. We also incorporated the Web texts crawled by in-house system. The total size of our training corpus is about 650 GB. The trained model achieves 7.50 perplexity on the internal validation sets of Japanese C4, ## Tokenization We use a sentencepiece tokenizer with a unigram language model and byte-fallback. We **do not** apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)