line-distilbert-base-japanese / distilbert_japanese_tokenizer.py
kajyuuen's picture
Initial commit
a7345ac
raw
history blame
39.9 kB
# coding=utf-8
# Copyright 2023 LINE Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Almost copied from [transformers.BertJapaneseTokenizer](https://github.com/huggingface/transformers/blob/v4.26.1/src/transformers/models/bert_japanese/tokenization_bert_japanese.py#)
# This code is distributed under the Apache License 2.0.
"""Tokenization classes."""
import collections
import copy
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from transformers.utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
import sentencepiece as spm
else:
spm = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt",
"cl-tohoku/bert-base-japanese-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt"
),
"cl-tohoku/bert-base-japanese-char": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt"
),
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"cl-tohoku/bert-base-japanese": 512,
"cl-tohoku/bert-base-japanese-whole-word-masking": 512,
"cl-tohoku/bert-base-japanese-char": 512,
"cl-tohoku/bert-base-japanese-char-whole-word-masking": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"cl-tohoku/bert-base-japanese": {
"do_lower_case": False,
"word_tokenizer_type": "mecab",
"subword_tokenizer_type": "wordpiece",
},
"cl-tohoku/bert-base-japanese-whole-word-masking": {
"do_lower_case": False,
"word_tokenizer_type": "mecab",
"subword_tokenizer_type": "wordpiece",
},
"cl-tohoku/bert-base-japanese-char": {
"do_lower_case": False,
"word_tokenizer_type": "mecab",
"subword_tokenizer_type": "character",
},
"cl-tohoku/bert-base-japanese-char-whole-word-masking": {
"do_lower_case": False,
"word_tokenizer_type": "mecab",
"subword_tokenizer_type": "character",
},
}
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class DistilBertJapaneseTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer for Japanese text.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
to: this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to a one-wordpiece-per-line vocabulary file.
spm_file (`str`, *optional*):
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
extension) that contains the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
do_word_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do word tokenization.
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do subword tokenization.
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
mecab_kwargs (`dict`, *optional*):
Dictionary passed to the `MecabTokenizer` constructor.
sudachi_kwargs (`dict`, *optional*):
Dictionary passed to the `SudachiTokenizer` constructor.
jumanpp_kwargs (`dict`, *optional*):
Dictionary passed to the `JumanppTokenizer` constructor.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = [ "input_ids" , "attention_mask" ]
def __init__(
self,
vocab_file,
spm_file=None,
do_lower_case=False,
do_word_tokenize=True,
do_subword_tokenize=True,
word_tokenizer_type="basic",
subword_tokenizer_type="wordpiece",
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
mecab_kwargs=None,
sudachi_kwargs=None,
jumanpp_kwargs=None,
**kwargs
):
super().__init__(
spm_file=spm_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
do_lower_case=do_lower_case,
do_word_tokenize=do_word_tokenize,
do_subword_tokenize=do_subword_tokenize,
word_tokenizer_type=word_tokenizer_type,
subword_tokenizer_type=subword_tokenizer_type,
never_split=never_split,
mecab_kwargs=mecab_kwargs,
sudachi_kwargs=sudachi_kwargs,
jumanpp_kwargs=jumanpp_kwargs,
**kwargs,
)
if subword_tokenizer_type == "sentencepiece":
if not os.path.isfile(spm_file):
raise ValueError(
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.spm_file = spm_file
else:
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_word_tokenize = do_word_tokenize
self.word_tokenizer_type = word_tokenizer_type
self.lower_case = do_lower_case
self.never_split = never_split
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
if do_word_tokenize:
if word_tokenizer_type == "basic":
self.word_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
)
elif word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
)
elif word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
)
elif word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
)
else:
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
self.do_subword_tokenize = do_subword_tokenize
self.subword_tokenizer_type = subword_tokenizer_type
if do_subword_tokenize:
if subword_tokenizer_type == "wordpiece":
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
elif subword_tokenizer_type == "character":
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token)
elif subword_tokenizer_type == "sentencepiece":
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token)
else:
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
@property
def do_lower_case(self):
return self.lower_case
def __getstate__(self):
state = dict(self.__dict__)
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
del state["word_tokenizer"]
return state
def __setstate__(self, state):
self.__dict__ = state
if self.word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
)
elif self.word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
)
elif self.word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
)
def _tokenize(self, text):
if self.do_word_tokenize:
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
else:
tokens = [text]
if self.do_subword_tokenize:
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
else:
split_tokens = tokens
return split_tokens
@property
def vocab_size(self):
if self.subword_tokenizer_type == "sentencepiece":
return len(self.subword_tokenizer.sp_model)
return len(self.vocab)
def get_vocab(self):
if self.subword_tokenizer_type == "sentencepiece":
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
return dict(self.vocab, **self.added_tokens_encoder)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.PieceToId(token)
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.IdToPiece(index)
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.decode(tokens)
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
if self.subword_tokenizer_type == "sentencepiece":
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
)
else:
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
if self.subword_tokenizer_type == "sentencepiece":
with open(vocab_file, "wb") as writer:
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
writer.write(content_spiece_model)
else:
with open(vocab_file, "w", encoding="utf-8") as writer:
index = 0
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class MecabTokenizer:
"""Runs basic tokenization with MeCab morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
mecab_dic: Optional[str] = "ipadic",
mecab_option: Optional[str] = None,
):
"""
Constructs a MecabTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**mecab_dic**: (*optional*) string (default "ipadic")
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
set this option to `None` and modify *mecab_option*.
**mecab_option**: (*optional*) string
String passed to MeCab constructor.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
try:
import fugashi
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install fugashi to use MecabTokenizer. "
"See https://pypi.org/project/fugashi/ for installation."
)
mecab_option = mecab_option or ""
if mecab_dic is not None:
if mecab_dic == "ipadic":
try:
import ipadic
except ModuleNotFoundError as error:
raise error.__class__(
"The ipadic dictionary is not installed. "
"See https://github.com/polm/ipadic-py for installation."
)
dic_dir = ipadic.DICDIR
elif mecab_dic == "unidic_lite":
try:
import unidic_lite
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic_lite dictionary is not installed. "
"See https://github.com/polm/unidic-lite for installation."
)
dic_dir = unidic_lite.DICDIR
elif mecab_dic == "unidic":
try:
import unidic
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic dictionary is not installed. "
"See https://github.com/polm/unidic-py for installation."
)
dic_dir = unidic.DICDIR
if not os.path.isdir(dic_dir):
raise RuntimeError(
"The unidic dictionary itself is not found. "
"See https://github.com/polm/unidic-py for installation."
)
else:
raise ValueError("Invalid mecab_dic is specified.")
mecabrc = os.path.join(dic_dir, "mecabrc")
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
self.mecab = fugashi.GenericTagger(mecab_option)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.mecab(text):
token = word.surface
if self.do_lower_case and token not in never_split:
token = token.lower()
tokens.append(token)
return tokens
class SudachiTokenizer:
"""Runs basic tokenization with Sudachi morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
sudachi_split_mode="A",
sudachi_config_path=None,
sudachi_resource_dir=None,
sudachi_dict_type="core",
):
"""
Constructs a SudachiTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
**sudachi_split_mode**: (*optional*) string
Split mode of sudachi, choose from "A", "B", "C".
**sudachi_config_path**: (*optional*) string
**sudachi_resource_dir**: (*optional*) string
**sudachi_dict_type**: (*optional*) string
dict type of sudachi, choose from "small", "core", "full".
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
from sudachipy import dictionary, tokenizer
except ImportError:
raise ImportError(
"You need to install sudachipy to use SudachiTokenizer. "
"See https://github.com/WorksApplications/SudachiPy for installation."
)
if sudachi_split_mode == "A":
self.split_mode = tokenizer.Tokenizer.SplitMode.A
elif sudachi_split_mode == "B":
self.split_mode = tokenizer.Tokenizer.SplitMode.B
elif sudachi_split_mode == "C":
self.split_mode = tokenizer.Tokenizer.SplitMode.C
else:
raise ValueError("Invalid sudachi_split_mode is specified.")
self.sudachi = dictionary.Dictionary(
config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type
).create(self.split_mode)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.sudachi.tokenize(text):
token = word.surface()
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class JumanppTokenizer:
"""Runs basic tokenization with jumanpp morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
):
"""
Constructs a JumanppTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
import rhoknp
except ImportError:
raise ImportError(
"You need to install rhoknp to use JumanppTokenizer. "
"See https://github.com/ku-nlp/rhoknp for installation."
)
self.juman = rhoknp.Jumanpp()
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
text = text.strip()
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for mrph in self.juman.apply_to_sentence(text).morphemes:
token = mrph.text
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class CharacterTokenizer:
"""Runs Character tokenization."""
def __init__(self, vocab, unk_token, normalize_text=True):
"""
Constructs a CharacterTokenizer.
Args:
**vocab**:
Vocabulary object.
**unk_token**: str
A special symbol for out-of-vocabulary token.
**normalize_text**: (`optional`) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
"""
self.vocab = vocab
self.unk_token = unk_token
self.normalize_text = normalize_text
def tokenize(self, text):
"""
Tokenizes a piece of text into characters.
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
Args:
text: A single token or whitespace separated tokens.
This should have already been passed through *BasicTokenizer*.
Returns:
A list of characters.
"""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
output_tokens = []
for char in text:
if char not in self.vocab:
output_tokens.append(self.unk_token)
continue
output_tokens.append(char)
return output_tokens
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if never_split is not None and text in never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
class SentencepieceTokenizer(object):
"""
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
"""
def __init__(
self,
vocab,
unk_token,
do_lower_case=False,
remove_space=True,
keep_accents=True,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
):
self.vocab = vocab
self.unk_token = unk_token
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def tokenize(self, text):
"""
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
Tokenization needs the given vocabulary.
Args:
text: A string needs to be tokenized.
Returns:
A list of sentencepiece tokens.
"""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces