linh5nb commited on
Commit
6d9c0e4
·
verified ·
1 Parent(s): f58de22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -10,17 +10,20 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
10
  model = AutoModelForCausalLM.from_pretrained("linh5nb/Llama-2-7b-chat-finetune_covid")
11
  tokenizer = AutoTokenizer.from_pretrained("linh5nb/Llama-2-7b-chat-finetune_covid")
12
 
13
- prompt = "What is the main cause of HIV-1 infection in children?"
14
 
15
- pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
16
 
17
- result = pipe(f"<s>[INST] {prompt} [/INST] ")
 
 
18
 
19
- print(result[0]['generated_text'])
 
20
 
21
- [More Information Needed]
 
22
 
23
- ## Training Details
24
 
25
  ### Training Data
26
  https://huggingface.co/datasets/hodgesz/covid_qa_llama2
 
10
  model = AutoModelForCausalLM.from_pretrained("linh5nb/Llama-2-7b-chat-finetune_covid")
11
  tokenizer = AutoTokenizer.from_pretrained("linh5nb/Llama-2-7b-chat-finetune_covid")
12
 
13
+ user_input = '''When was the West African Ebolavirus outbreak?'''
14
 
 
15
 
16
+ our_system_prompt = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n" # Please do NOT change this
17
+ your_system_prompt = "Please, answer this question faithfully."
18
+ prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{your_system_prompt}\n{user_input} [/INST]"
19
 
20
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
21
+ outputs = model.generate(input_ids=inputs, max_length=4096)[0]
22
 
23
+ answer_start = int(inputs.shape[-1])
24
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
25
 
26
+ print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
27
 
28
  ### Training Data
29
  https://huggingface.co/datasets/hodgesz/covid_qa_llama2