Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ widget:
|
|
18 |
negative_prompt: 'blurry, cropped, ugly'
|
19 |
output:
|
20 |
url: ./assets/image_0_0.png
|
21 |
-
- text: '
|
22 |
parameters:
|
23 |
negative_prompt: 'blurry, cropped, ugly'
|
24 |
output:
|
@@ -32,7 +32,7 @@ This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https:/
|
|
32 |
|
33 |
The main validation prompt used during training was:
|
34 |
```
|
35 |
-
|
36 |
```
|
37 |
|
38 |
|
@@ -42,7 +42,7 @@ This vibrant photograph captures a woman standing on a wooden deck, gazing out a
|
|
42 |
- Steps: `20`
|
43 |
- Sampler: `FlowMatchEulerDiscreteScheduler`
|
44 |
- Seed: `42`
|
45 |
-
- Resolution: `
|
46 |
- Skip-layer guidance:
|
47 |
|
48 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
@@ -58,12 +58,12 @@ You may reuse the base model text encoder for inference.
|
|
58 |
|
59 |
## Training settings
|
60 |
|
61 |
-
- Training epochs:
|
62 |
-
- Training steps:
|
63 |
- Learning rate: 0.0004
|
64 |
- Learning rate schedule: polynomial
|
65 |
- Warmup steps: 100
|
66 |
-
- Max grad norm:
|
67 |
- Effective batch size: 1
|
68 |
- Micro-batch size: 1
|
69 |
- Gradient accumulation steps: 1
|
@@ -83,27 +83,27 @@ You may reuse the base model text encoder for inference.
|
|
83 |
|
84 |
## Datasets
|
85 |
|
86 |
-
###
|
87 |
- Repeats: 10
|
88 |
-
- Total number of images:
|
89 |
- Total number of aspect buckets: 1
|
90 |
- Resolution: 0.262144 megapixels
|
91 |
- Cropped: False
|
92 |
- Crop style: None
|
93 |
- Crop aspect: None
|
94 |
- Used for regularisation data: No
|
95 |
-
###
|
96 |
- Repeats: 10
|
97 |
-
- Total number of images:
|
98 |
- Total number of aspect buckets: 1
|
99 |
- Resolution: 0.589824 megapixels
|
100 |
- Cropped: False
|
101 |
- Crop style: None
|
102 |
- Crop aspect: None
|
103 |
- Used for regularisation data: No
|
104 |
-
###
|
105 |
- Repeats: 10
|
106 |
-
- Total number of images:
|
107 |
- Total number of aspect buckets: 1
|
108 |
- Resolution: 1.048576 megapixels
|
109 |
- Cropped: False
|
@@ -124,22 +124,22 @@ adapter_id = 'linhqyy/deephouse-st-2911'
|
|
124 |
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
|
125 |
pipeline.load_lora_weights(adapter_id)
|
126 |
|
127 |
-
prompt = "
|
128 |
|
129 |
|
130 |
## Optional: quantise the model to save on vram.
|
131 |
-
## Note: The model was quantised during training,
|
132 |
-
from optimum.quanto import quantize, freeze, qint8
|
133 |
-
quantize(pipeline.transformer, weights=qint8)
|
134 |
-
freeze(pipeline.transformer)
|
135 |
|
136 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
|
137 |
image = pipeline(
|
138 |
prompt=prompt,
|
139 |
num_inference_steps=20,
|
140 |
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
|
141 |
-
width=
|
142 |
-
height=
|
143 |
guidance_scale=3.0,
|
144 |
).images[0]
|
145 |
image.save("output.png", format="PNG")
|
|
|
18 |
negative_prompt: 'blurry, cropped, ugly'
|
19 |
output:
|
20 |
url: ./assets/image_0_0.png
|
21 |
+
- text: 'a women laughing with short hair'
|
22 |
parameters:
|
23 |
negative_prompt: 'blurry, cropped, ugly'
|
24 |
output:
|
|
|
32 |
|
33 |
The main validation prompt used during training was:
|
34 |
```
|
35 |
+
a women laughing with short hair
|
36 |
```
|
37 |
|
38 |
|
|
|
42 |
- Steps: `20`
|
43 |
- Sampler: `FlowMatchEulerDiscreteScheduler`
|
44 |
- Seed: `42`
|
45 |
+
- Resolution: `1024x1024`
|
46 |
- Skip-layer guidance:
|
47 |
|
48 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
|
|
58 |
|
59 |
## Training settings
|
60 |
|
61 |
+
- Training epochs: 1
|
62 |
+
- Training steps: 500
|
63 |
- Learning rate: 0.0004
|
64 |
- Learning rate schedule: polynomial
|
65 |
- Warmup steps: 100
|
66 |
+
- Max grad norm: 2.0
|
67 |
- Effective batch size: 1
|
68 |
- Micro-batch size: 1
|
69 |
- Gradient accumulation steps: 1
|
|
|
83 |
|
84 |
## Datasets
|
85 |
|
86 |
+
### nobel-512
|
87 |
- Repeats: 10
|
88 |
+
- Total number of images: 11
|
89 |
- Total number of aspect buckets: 1
|
90 |
- Resolution: 0.262144 megapixels
|
91 |
- Cropped: False
|
92 |
- Crop style: None
|
93 |
- Crop aspect: None
|
94 |
- Used for regularisation data: No
|
95 |
+
### nobel-768
|
96 |
- Repeats: 10
|
97 |
+
- Total number of images: 11
|
98 |
- Total number of aspect buckets: 1
|
99 |
- Resolution: 0.589824 megapixels
|
100 |
- Cropped: False
|
101 |
- Crop style: None
|
102 |
- Crop aspect: None
|
103 |
- Used for regularisation data: No
|
104 |
+
### nobel-1024
|
105 |
- Repeats: 10
|
106 |
+
- Total number of images: 11
|
107 |
- Total number of aspect buckets: 1
|
108 |
- Resolution: 1.048576 megapixels
|
109 |
- Cropped: False
|
|
|
124 |
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
|
125 |
pipeline.load_lora_weights(adapter_id)
|
126 |
|
127 |
+
prompt = "a women laughing with short hair"
|
128 |
|
129 |
|
130 |
## Optional: quantise the model to save on vram.
|
131 |
+
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
|
132 |
+
#from optimum.quanto import quantize, freeze, qint8
|
133 |
+
#quantize(pipeline.transformer, weights=qint8)
|
134 |
+
#freeze(pipeline.transformer)
|
135 |
|
136 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
|
137 |
image = pipeline(
|
138 |
prompt=prompt,
|
139 |
num_inference_steps=20,
|
140 |
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
|
141 |
+
width=1024,
|
142 |
+
height=1024,
|
143 |
guidance_scale=3.0,
|
144 |
).images[0]
|
145 |
image.save("output.png", format="PNG")
|