File size: 1,956 Bytes
5c494fd c09b5bd 5c494fd c09b5bd 5b909c8 5c494fd 5b909c8 5c494fd c09b5bd 49f6b30 5b909c8 5c494fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- nan
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small Taiwanese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Taiwanese
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 15.0 and 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3916
- Wer: 68.5703
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4172 | 0.32 | 1000 | 0.4641 | 82.9494 |
| 0.2962 | 0.64 | 2000 | 0.3834 | 73.8040 |
| 0.229 | 0.97 | 3000 | 0.3537 | 70.0423 |
| 0.1994 | 1.29 | 4000 | 0.3685 | 71.1599 |
| 0.1693 | 1.61 | 5000 | 0.3551 | 67.8206 |
| 0.1398 | 1.93 | 6000 | 0.3526 | 67.6707 |
| 0.1032 | 2.25 | 7000 | 0.3836 | 69.4834 |
| 0.0745 | 2.58 | 8000 | 0.3839 | 68.5566 |
| 0.0558 | 2.9 | 9000 | 0.3916 | 68.5703 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|