--- language: - nan license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Taiwanese results: [] --- # Whisper Small Taiwanese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 15.0 and 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3526 - Wer: 67.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4172 | 0.32 | 1000 | 0.4641 | 82.9494 | | 0.2962 | 0.64 | 2000 | 0.3834 | 73.8040 | | 0.229 | 0.97 | 3000 | 0.3537 | 70.0423 | | 0.1994 | 1.29 | 4000 | 0.3685 | 71.1599 | | 0.1693 | 1.61 | 5000 | 0.3551 | 67.8206 | | 0.1398 | 1.93 | 6000 | 0.3526 | 67.6707 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2