medical
File size: 11,381 Bytes
5ceacbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import timm
from timm.data import create_transform

from yacs.config import CfgNode as CN
from PIL import ImageFilter
import logging
import random

import torch
import torchvision.transforms as T


from .autoaugment import AutoAugmentPolicy
from .autoaugment import AutoAugment
from .autoaugment import RandAugment
from .autoaugment import TrivialAugmentWide
from .threeaugment import deitIII_Solarization
from .threeaugment import deitIII_gray_scale
from .threeaugment import deitIII_GaussianBlur

from PIL import ImageOps
from timm.data.transforms import RandomResizedCropAndInterpolation

logger = logging.getLogger(__name__)


class GaussianBlur(object):
    """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""

    def __init__(self, sigma=[.1, 2.]):
        self.sigma = sigma

    def __call__(self, x):
        sigma = random.uniform(self.sigma[0], self.sigma[1])
        x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
        return x


def get_resolution(original_resolution):
    """Takes (H,W) and returns (precrop, crop)."""
    area = original_resolution[0] * original_resolution[1]
    return (160, 128) if area < 96*96 else (512, 480)


INTERPOLATION_MODES = {
    'bilinear': T.InterpolationMode.BILINEAR,
    'bicubic': T.InterpolationMode.BICUBIC,
    'nearest': T.InterpolationMode.NEAREST,
}


def build_transforms(cfg, is_train=True):
    # assert isinstance(cfg.DATASET.OUTPUT_SIZE, (list, tuple)), 'DATASET.OUTPUT_SIZE should be list or tuple'
    normalize = T.Normalize(
        mean=cfg['IMAGE_ENCODER']['IMAGE_MEAN'],
        std=cfg['IMAGE_ENCODER']['IMAGE_STD']
    )

    transforms = None
    if is_train:
        if 'THREE_AUG' in cfg['AUG']:
            img_size = cfg['IMAGE_ENCODER']['IMAGE_SIZE']
            remove_random_resized_crop = cfg['AUG']['THREE_AUG']['SRC']
            mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
            primary_tfl = []
            scale=(0.08, 1.0)
            interpolation='bicubic'
            if remove_random_resized_crop:
                primary_tfl = [
                    T.Resize(img_size, interpolation=3),
                    T.RandomCrop(img_size, padding=4,padding_mode='reflect'),
                    T.RandomHorizontalFlip()
                ]
            else:
                primary_tfl = [
                    RandomResizedCropAndInterpolation(
                        img_size, scale=scale, interpolation=interpolation),
                    T.RandomHorizontalFlip()
                ]
            secondary_tfl = [T.RandomChoice([gray_scale(p=1.0),
                                             Solarization(p=1.0),
                                             GaussianBlurDeiTv3(p=1.0)])]
            color_jitter = cfg['AUG']['THREE_AUG']['COLOR_JITTER']
            if color_jitter is not None and not color_jitter==0:
                secondary_tfl.append(T.ColorJitter(color_jitter, color_jitter, color_jitter))
            final_tfl = [
                    T.ToTensor(),
                    T.Normalize(
                        mean=torch.tensor(mean),
                        std=torch.tensor(std))
                ]
            return T.Compose(primary_tfl+secondary_tfl+final_tfl)
        elif 'TIMM_AUG' in cfg['AUG'] and cfg['AUG']['TIMM_AUG']['USE_TRANSFORM']:
            logger.info('=> use timm transform for training')
            timm_cfg = cfg['AUG']['TIMM_AUG']
            transforms = create_transform(
                input_size=cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0],
                is_training=True,
                use_prefetcher=False,
                no_aug=False,
                re_prob=timm_cfg.get('RE_PROB', 0.),
                re_mode=timm_cfg.get('RE_MODE', 'const'),
                re_count=timm_cfg.get('RE_COUNT', 1),
                re_num_splits= 0 if not timm_cfg.get('RE_SPLITS', False) else timm_cfg['RE_SPLITS'], # if false or 0, return 0
                scale=cfg['AUG'].get('SCALE', None),
                ratio=cfg['AUG'].get('RATIO', None),
                hflip=timm_cfg.get('HFLIP', 0.5),
                vflip=timm_cfg.get('VFLIP', 0.),
                color_jitter=timm_cfg.get('COLOR_JITTER', 0.4),
                auto_augment=timm_cfg.get('AUTO_AUGMENT', None),
                interpolation=cfg['AUG']['INTERPOLATION'],
                mean=cfg['IMAGE_ENCODER']['IMAGE_MEAN'],
                std=cfg['IMAGE_ENCODER']['IMAGE_STD'],
            )
        elif 'TORCHVISION_AUG' in cfg['AUG']:
            logger.info('=> use torchvision transform fro training')
            crop_size = cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0]
            interpolation = INTERPOLATION_MODES[cfg['AUG']['INTERPOLATION']]
            trans = [
                T.RandomResizedCrop(
                    crop_size, scale=cfg['AUG']['SCALE'], ratio=cfg['AUG']['RATIO'],
                    interpolation=interpolation
                )
            ]
            hflip_prob = cfg['AUG']['TORCHVISION_AUG']['HFLIP']
            auto_augment_policy = cfg['AUG']['TORCHVISION_AUG'].get('AUTO_AUGMENT', None)
            if hflip_prob > 0:
                trans.append(T.RandomHorizontalFlip(hflip_prob))
            if auto_augment_policy is not None:
                if auto_augment_policy == "ra":
                    trans.append(RandAugment(interpolation=interpolation))
                elif auto_augment_policy == "ta_wide":
                    trans.append(TrivialAugmentWide(interpolation=interpolation))
                else:
                    aa_policy = AutoAugmentPolicy(auto_augment_policy)
                    trans.append(AutoAugment(policy=aa_policy, interpolation=interpolation))
            trans.extend(
                [
                    T.ToTensor(),
                    normalize,
                ]
            )
            random_erase_prob = cfg['AUG']['TORCHVISION_AUG']['RE_PROB']
            random_erase_scale = cfg['AUG']['TORCHVISION_AUG'].get('RE_SCALE', 0.33)
            if random_erase_prob > 0:
                # NCFC (4/26/2023): Added scale parameter to random erasing for medical imaging
                trans.append(T.RandomErasing(p=random_erase_prob, scale = (0.02, random_erase_scale)))

            from torchvision.transforms import InterpolationMode
            rotation = cfg['AUG']['TORCHVISION_AUG'].get('ROTATION', 0.0)
            if (rotation > 0.0):
                trans.append(T.RandomRotation(rotation, interpolation=InterpolationMode.BILINEAR))
                logger.info(" TORCH AUG: Rotation: " + str(rotation))

            transforms = T.Compose(trans)
        elif cfg['AUG'].get('RANDOM_CENTER_CROP', False):
            logger.info('=> use random center crop data augmenation')
            # precrop, crop = get_resolution(cfg.TRAIN.IMAGE_SIZE)
            crop = cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0]
            padding = cfg['AUG'].get('RANDOM_CENTER_CROP_PADDING', 32)
            precrop = crop + padding
            mode = INTERPOLATION_MODES[cfg['AUG']['INTERPOLATION']]
            transforms = T.Compose([
                T.Resize(
                    (precrop, precrop),
                    interpolation=mode
                ),
                T.RandomCrop((crop, crop)),
                T.RandomHorizontalFlip(),
                T.ToTensor(),
                normalize,
            ])
        elif cfg['AUG'].get('MAE_FINETUNE_AUG', False):
            mean = cfg['IMAGE_ENCODER']['IMAGE_MEAN']
            std = cfg['IMAGE_ENCODER']['IMAGE_STD']
            transforms = create_transform(
                input_size=cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0],
                is_training=True,
                color_jitter=cfg['AUG'].get('COLOR_JITTER', None),
                auto_augment=cfg['AUG'].get('AUTO_AUGMENT', 'rand-m9-mstd0.5-inc1'),
                interpolation='bicubic',
                re_prob=cfg['AUG'].get('RE_PROB', 0.25),
                re_mode=cfg['AUG'].get('RE_MODE', "pixel"),
                re_count=cfg['AUG'].get('RE_COUNT', 1),
                mean=mean,
                std=std,
            )
        elif cfg['AUG'].get('MAE_PRETRAIN_AUG', False):
            mean = cfg['IMAGE_ENCODER']['IMAGE_MEAN']
            std = cfg['IMAGE_ENCODER']['IMAGE_STD']
            transforms = T.Compose([
                T.RandomResizedCrop(cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0], scale=tuple(cfg['AUG']['SCALE']), interpolation=INTERPOLATION_MODES["bicubic"]),  # 3 is bicubic
                T.RandomHorizontalFlip(),
                T.ToTensor(),
                T.Normalize(mean=mean, std=std)])
        elif cfg['AUG'].get('ThreeAugment', False): # from DeiT III
            mean = cfg['IMAGE_ENCODER']['IMAGE_MEAN']
            std = cfg['IMAGE_ENCODER']['IMAGE_STD']
            img_size = cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0]
            remove_random_resized_crop = cfg['AUG'].get('src', False)
            mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
            primary_tfl = []
            scale=(0.08, 1.0)
            interpolation='bicubic'
            if remove_random_resized_crop:
                primary_tfl = [
                    T.Resize(img_size, interpolation=3), # bicubic
                    T.RandomCrop(img_size, padding=4,padding_mode='reflect'),
                    T.RandomHorizontalFlip()
                ]
            else:
                primary_tfl = [
                    timm.data.transforms.RandomResizedCropAndInterpolation(
                        img_size, scale=scale, interpolation=interpolation),
                    T.RandomHorizontalFlip()
                ]

            secondary_tfl = [T.RandomChoice([deitIII_gray_scale(p=1.0),
                                             deitIII_Solarization(p=1.0),
                                             deitIII_GaussianBlur(p=1.0)])]
            color_jitter = cfg['AUG']['COLOR_JITTER']
            secondary_tfl.append(T.ColorJitter(color_jitter, color_jitter, color_jitter))
            final_tfl = [
                    T.ToTensor(),
                    T.Normalize(
                        mean=torch.tensor(mean),
                        std=torch.tensor(std))
                ]
            transforms = T.Compose(primary_tfl+secondary_tfl+final_tfl)
        logger.info('=> training transformers: {}'.format(transforms))
    else:
        mode = INTERPOLATION_MODES[cfg['AUG']['INTERPOLATION']]
        if cfg['TEST']['CENTER_CROP']:
            transforms = T.Compose([
                T.Resize(
                    int(cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0] / 0.875),
                    # the same behavior as in deit: size = int((256 / 224) * args.input_size)
                    # 224 / 256 = 0.875
                    interpolation=mode
                ),
                T.CenterCrop(cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0]),
                T.ToTensor(),
                normalize,
            ])
        else:
            transforms = T.Compose([
                T.Resize(
                    (cfg['IMAGE_ENCODER']['IMAGE_SIZE'][1], cfg['IMAGE_ENCODER']['IMAGE_SIZE'][0]),
                    interpolation=mode
                ),
                T.ToTensor(),
                normalize,
            ])
        logger.info('=> testing transformers: {}'.format(transforms))

    return transforms