My First RL agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +9 -9
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 283.98 +/- 15.75
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6c29d1940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6c29d19d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6c29d1a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6c29d1af0>", "_build": "<function ActorCriticPolicy._build at 0x7fe6c29d1b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6c29d1c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6c29d1ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6c29d1d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6c29d1dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6c29d1e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6c29d1ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6c29d1f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe6c29d06c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678786450357689598, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPqRHT6q4lk/G5j5PWTz+b7NeSo+IlWOPQAAAAAAAAAAc53qvaouVj9z0h++dqIIv4vpTr4wedo8AAAAAAAAAABzB4a9zoCJPa2h6T0u+Di+j3oAvIsPxzwAAAAAAAAAAENgYb7o+RI/4eUFPeYquL49hQy+Wb8ZPgAAAAAAAAAAjtmRvrneCD8SNDw+k/zlvo/Ahb0FHvs9AAAAAAAAAACN8xW+iAJ5P1dbyr3C5AG/B6ogvjIwArwAAAAAAAAAACBHMj4ux5C8QRIDu82PXzmF3gi+9KE0OgAAgD8AAIA/ZrjlPW5hhD1sPyK+0PY9vlZj3LxS5mk8AAAAAAAAAABNOdw9n3Knu9qa8bw/aiM9FewGPTrYBr4AAAAAAACAPxpd+j1r/KY+5d/6vVt+zr6lfPI86uWhvQAAAAAAAAAAsGxSvk+JJT/Sywc9YkcBv2ry5732mag9AAAAAAAAAACt/2W+wY5GP6weDr7hnN2+KhaDvqYGZj4AAAAAAAAAAFookD1mHIw/J1Q5PqeXIb+PK8U910VJPQAAAAAAAAAA7flkvilbTT5dvHA+SXO/vuGb9LsuXaw7AAAAAAAAAACaMa69XPM5uv0zWT20d2i8/zKLOxH5S70AAAAAAACAP/OE1b0xCtc9kdQnPtR3PL6mM7069ZQmPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHJYGfhTVcECUhpRSlIwBbJRL1YwBdJRHQKBjHJo0ygx1fZQoaAZoCWgPQwg983LY/XVxQJSGlFKUaBVLu2gWR0CgYyYNy5qedX2UKGgGaAloD0MIPIidKfRkbUCUhpRSlGgVS89oFkdAoGMtc4YJmnV9lChoBmgJaA9DCOHvF7PlGHJAlIaUUpRoFUvyaBZHQKBjrdonKGN1fZQoaAZoCWgPQwiyf54GTFtxQJSGlFKUaBVLxWgWR0CgY7r7oB7vdX2UKGgGaAloD0MI71aW6CwkcECUhpRSlGgVS9VoFkdAoGO+Kl54W3V9lChoBmgJaA9DCGpnmNrSy29AlIaUUpRoFUvFaBZHQKBjxTcZccF1fZQoaAZoCWgPQwh8CoDxjNFvQJSGlFKUaBVLzmgWR0CgY9rxRVIadX2UKGgGaAloD0MIWf0RhkGucUCUhpRSlGgVS9RoFkdAoGQ23hGYr3V9lChoBmgJaA9DCH7DRIOU4nJAlIaUUpRoFUvRaBZHQKBkfWMju8d1fZQoaAZoCWgPQwjDSZo/pttxQJSGlFKUaBVLuGgWR0CgZIh2fTTfdX2UKGgGaAloD0MI6DOg3szYckCUhpRSlGgVS9xoFkdAoGURJwsGxHV9lChoBmgJaA9DCAtD5PT1mnBAlIaUUpRoFU0jAWgWR0CgZRvzvqkedX2UKGgGaAloD0MI2T15WCiCcECUhpRSlGgVS8loFkdAoGUtzS1E3XV9lChoBmgJaA9DCPvnacCgHnNAlIaUUpRoFUvRaBZHQKBlPMLWqcV1fZQoaAZoCWgPQwibj2tDRa9iQJSGlFKUaBVN6ANoFkdAoGV3wRXfZXV9lChoBmgJaA9DCAqGcw1zGXJAlIaUUpRoFUvDaBZHQKBll7l7tzF1fZQoaAZoCWgPQwgw2A3blh9wQJSGlFKUaBVLyGgWR0CgZZ4mCyyEdX2UKGgGaAloD0MIxAd2/Jf+cUCUhpRSlGgVS6poFkdAoGXI1DSgG3V9lChoBmgJaA9DCGx4eqUsZ3FAlIaUUpRoFUvdaBZHQKBlyFdszl91fZQoaAZoCWgPQwgyAb9G0g1wQJSGlFKUaBVLx2gWR0CgZgmvW6K+dX2UKGgGaAloD0MIUYU/wxugcUCUhpRSlGgVS9xoFkdAoGY7y6MBIXV9lChoBmgJaA9DCIjZy7YTKHFAlIaUUpRoFUvUaBZHQKBmQu01IiF1fZQoaAZoCWgPQwgpIVhVL+dyQJSGlFKUaBVNAgFoFkdAoGaZKBd2PnV9lChoBmgJaA9DCA3fwrrxZXJAlIaUUpRoFUvIaBZHQKBmr5ULlV91fZQoaAZoCWgPQwgeUgyQ6NNyQJSGlFKUaBVL6mgWR0CgZwSUkfLcdX2UKGgGaAloD0MISmJJubuNcUCUhpRSlGgVS9JoFkdAoGdKxZ+x4nV9lChoBmgJaA9DCMNIL2o3AHBAlIaUUpRoFUvGaBZHQKBng9CeEqV1fZQoaAZoCWgPQwiWXwZjBPxwQJSGlFKUaBVL6WgWR0CgZ4fShJyydX2UKGgGaAloD0MIFLTJ4ZPNbkCUhpRSlGgVS71oFkdAoGePxx1gY3V9lChoBmgJaA9DCItQbAWNPXFAlIaUUpRoFUvGaBZHQKBnrwz+FUR1fZQoaAZoCWgPQwh5k9+i08hxQJSGlFKUaBVLtmgWR0CgZ7V7Y02tdX2UKGgGaAloD0MI2jujrYp9ckCUhpRSlGgVTT8BaBZHQKBnvY5DJEJ1fZQoaAZoCWgPQwiQaW0a23JvQJSGlFKUaBVL0GgWR0CgZ/jNpudgdX2UKGgGaAloD0MIidAINq7tcUCUhpRSlGgVS8loFkdAoGhp5VwPy3V9lChoBmgJaA9DCHTRkPGofXBAlIaUUpRoFUvYaBZHQKBooTkhib51fZQoaAZoCWgPQwiu8Zns33pxQJSGlFKUaBVLsWgWR0CgaKbUG3WndX2UKGgGaAloD0MIHy3OGKbccECUhpRSlGgVS99oFkdAoGkZ2r4nGHV9lChoBmgJaA9DCKlKW1xjvW5AlIaUUpRoFUvJaBZHQKBpU05U96l1fZQoaAZoCWgPQwiyLm6jgXJtQJSGlFKUaBVLvGgWR0CgabIPsiSrdX2UKGgGaAloD0MIrkhMUEMWcECUhpRSlGgVS9loFkdAoGnVwPy08nV9lChoBmgJaA9DCAgCZOhYXm5AlIaUUpRoFUvEaBZHQKBp3Gb1AZ91fZQoaAZoCWgPQwjgvDjx1UNvQJSGlFKUaBVLumgWR0CgafMLF4s3dX2UKGgGaAloD0MIELOXbefDckCUhpRSlGgVS9VoFkdAoGoKQcPvrnV9lChoBmgJaA9DCB123zE8QXBAlIaUUpRoFUvRaBZHQKBqMtQKrrB1fZQoaAZoCWgPQwhAvoQKzvhxQJSGlFKUaBVL4WgWR0CgaseFcpsodX2UKGgGaAloD0MIZjBGJAoEcUCUhpRSlGgVTRUBaBZHQKBrHK6nR9h1fZQoaAZoCWgPQwizmUNSy0lzQJSGlFKUaBVL1mgWR0Cgay5q20AtdX2UKGgGaAloD0MIMPZefBFVcUCUhpRSlGgVS8ZoFkdAoGsz4vexfXV9lChoBmgJaA9DCL+CNGNR9W9AlIaUUpRoFUvSaBZHQKBsEu8scyZ1fZQoaAZoCWgPQwgWiQlquIJyQJSGlFKUaBVL9GgWR0CgbExceKbbdX2UKGgGaAloD0MIsJC5Muitc0CUhpRSlGgVS8FoFkdAoGyfied073V9lChoBmgJaA9DCCUfuwvUhXFAlIaUUpRoFUvUaBZHQKBssJKJ2uB1fZQoaAZoCWgPQwjWVuwvuzlyQJSGlFKUaBVL8GgWR0CgbOcRcu8LdX2UKGgGaAloD0MIuK6YEZ5ZcECUhpRSlGgVS89oFkdAoGz8dJaq0nV9lChoBmgJaA9DCAuallhZHnJAlIaUUpRoFU0HAWgWR0CgbVZn+Q2ddX2UKGgGaAloD0MIh6jCn+FqbUCUhpRSlGgVS8JoFkdAoG2uLzf78HV9lChoBmgJaA9DCK33G+34bXBAlIaUUpRoFUvJaBZHQKBt5Hhjvux1fZQoaAZoCWgPQwjIXu/+uHtxQJSGlFKUaBVL7GgWR0Cgbf79ZRsNdX2UKGgGaAloD0MIfuVBesrNcECUhpRSlGgVS89oFkdAoG3/SWqtHXV9lChoBmgJaA9DCEDZlCv8enJAlIaUUpRoFU0xAWgWR0CgbiDtw71adX2UKGgGaAloD0MImKQyxZyYbkCUhpRSlGgVS8JoFkdAoG8FHnU2DXV9lChoBmgJaA9DCGvUQzS6/W5AlIaUUpRoFUu4aBZHQKBvkcG1QZZ1fZQoaAZoCWgPQwjFGi5yzwFyQJSGlFKUaBVL22gWR0Cgb8yDh99ddX2UKGgGaAloD0MILqwb745rcUCUhpRSlGgVS/RoFkdAoHDg9zOopHV9lChoBmgJaA9DCOLMr+aAK3NAlIaUUpRoFUvuaBZHQKBxFpbD/ER1fZQoaAZoCWgPQwibVZ+r7c1xQJSGlFKUaBVL02gWR0CgcTS39aUzdX2UKGgGaAloD0MI4UT0a2swbkCUhpRSlGgVS7xoFkdAoHFCziS7oXV9lChoBmgJaA9DCIgs0sQ783JAlIaUUpRoFUvDaBZHQKBxwK0lZ5l1fZQoaAZoCWgPQwjDmsqicKZxQJSGlFKUaBVLymgWR0Cgccuby6MBdX2UKGgGaAloD0MICJPi4xMycUCUhpRSlGgVS8JoFkdAoHHhfOUt7XV9lChoBmgJaA9DCFp+4CpPYl1AlIaUUpRoFU3oA2gWR0Cgc2X4bjtHdX2UKGgGaAloD0MIKqio+pWwYUCUhpRSlGgVTegDaBZHQKBzhnanJkp1fZQoaAZoCWgPQwh7EW3H1ANxQJSGlFKUaBVLvmgWR0Cgc8CS7oStdX2UKGgGaAloD0MIKZgxBetHcECUhpRSlGgVTTgBaBZHQKB0RUWEbo91fZQoaAZoCWgPQwgpQup2thZyQJSGlFKUaBVNEwFoFkdAoHS+NBF/hHV9lChoBmgJaA9DCHHIBtLFF3FAlIaUUpRoFUv3aBZHQKB0xI3irDJ1fZQoaAZoCWgPQwh5dY4B2ddxQJSGlFKUaBVLuWgWR0CgdNXuVopQdX2UKGgGaAloD0MIZk0s8JW6Y0CUhpRSlGgVTegDaBZHQKB1SCJXQt11fZQoaAZoCWgPQwh5yf/kL0lxQJSGlFKUaBVLzmgWR0CgdXVdxAB1dX2UKGgGaAloD0MIV7PO+P57ckCUhpRSlGgVS8doFkdAoHV+waBI4HV9lChoBmgJaA9DCGZn0TsVXXBAlIaUUpRoFUu8aBZHQKB12X8fmtB1fZQoaAZoCWgPQwjBcK5hhjZxQJSGlFKUaBVL7GgWR0Cgdh2tlqagdX2UKGgGaAloD0MIYB+duvInc0CUhpRSlGgVS9NoFkdAoHYtar3j/HV9lChoBmgJaA9DCFPPglDex3BAlIaUUpRoFUvtaBZHQKB2r9UCJXR1fZQoaAZoCWgPQwjzAYHOZPhxQJSGlFKUaBVLzGgWR0Cgd51ZDArQdX2UKGgGaAloD0MIQiRDjq3GckCUhpRSlGgVS9loFkdAoHgnfdhy83V9lChoBmgJaA9DCILF4cyvYXBAlIaUUpRoFUvjaBZHQKB45fYzzmR1fZQoaAZoCWgPQwjRsBh1rW1yQJSGlFKUaBVLzGgWR0CgeWPUKArhdX2UKGgGaAloD0MICahwBCnMcUCUhpRSlGgVS7doFkdAoHlm0PYnOXV9lChoBmgJaA9DCM9J7xtfx3FAlIaUUpRoFUvyaBZHQKB5lJ/XoTx1fZQoaAZoCWgPQwggfv57sLdxQJSGlFKUaBVL6WgWR0CgebmqYJE6dX2UKGgGaAloD0MImkS94FMbckCUhpRSlGgVS/BoFkdAoHnUkfLcK3V9lChoBmgJaA9DCMqJdhVStXBAlIaUUpRoFUvfaBZHQKB6CP2f0291fZQoaAZoCWgPQwh7vJAOD51hQJSGlFKUaBVN6ANoFkdAoHojdgv12HV9lChoBmgJaA9DCAZLdQHvuXJAlIaUUpRoFUvYaBZHQKB6N1B+nZV1fZQoaAZoCWgPQwhqT8k5MeRxQJSGlFKUaBVL02gWR0CgelbdrO7hdX2UKGgGaAloD0MIO8YVFwd+cUCUhpRSlGgVS71oFkdAoHpopMHryHV9lChoBmgJaA9DCBd+cD612nJAlIaUUpRoFUvnaBZHQKB6hVENOM51fZQoaAZoCWgPQwgxYMlVrP5xQJSGlFKUaBVNFAFoFkdAoHqegte2NXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6c29d1940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6c29d19d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6c29d1a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6c29d1af0>", "_build": "<function ActorCriticPolicy._build at 0x7fe6c29d1b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6c29d1c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6c29d1ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6c29d1d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6c29d1dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6c29d1e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6c29d1ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6c29d1f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe6c29d06c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678788521539218496, "learning_rate": 0.0004, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Ojbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOzHLop4hm8aG5NPpdLBjzy13y9Nb7qPAAAgD8AAIA/OpkQvtQ4mj5yG0E+wKcTv6RnTr3gywY+AAAAAAAAAACaS/g85sGPPyozCz6yq1y/YJicPCgGrDwAAAAAAAAAAM170D2abLQ/WeUoP59NNb6Otmw9mcmrPgAAAAAAAAAAzZsoPdf5XDwubzq+5KqKvobuojxg3H69AAAAAAAAAABzgm4+2IUJP1U47b0/TzK/ZAmIPoCBRr4AAAAAAAAAADMRD71j4WQ/QrDjvYTbhL9BrrW9emnTPAAAAAAAAAAAmh4aPY+2RLzw/EK+PivJvWIUt7k++KQ8AACAPwAAgD+zvFk+kQeHPtoJ0r5MF/K+gdnqPPAVQ74AAAAAAAAAAJqi2TyPzji6wIUBvkwtjLGL1tC6Wt4WMwAAgD8AAIA/w3xsvnuMpD/CmAa/C/yxvptd0r7JZKu+AAAAAAAAAAAAawY9ivRDPKlYGz2biqe+EdbnPUAv2rwAAAAAAAAAAM35p71Ewcs9m5L4Pkavu74TaFo+uIRkPgAAAAAAAAAA2tXlvTdEvD/JxxK/pEqivfBCBr5Er6G+AAAAAAAAAACaqiq9SBuout1pmja17oMxGkiwuNwstbUAAIA/AACAP5qhIj1+JcA/QGs6PhMBm71vQ308l6siPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIa8Hk2J4c0CUhpRSlIwBbJRLuowBdJRHQLWrNRRMvh91fZQoaAZoCWgPQwiF7SdjPB5wQJSGlFKUaBVLomgWR0C1qzrP+n63dX2UKGgGaAloD0MI1XjpJjEBc0CUhpRSlGgVS81oFkdAtatM96kZaXV9lChoBmgJaA9DCH3nFyXowXFAlIaUUpRoFUuUaBZHQLWrodiDujR1fZQoaAZoCWgPQwjtt3ai5DNxQJSGlFKUaBVLpGgWR0C1q+1LBbfQdX2UKGgGaAloD0MIRN0HIHWmcUCUhpRSlGgVS8toFkdAtavvpC8e0XV9lChoBmgJaA9DCHxinSpfanNAlIaUUpRoFUvYaBZHQLWr99Tgl4V1fZQoaAZoCWgPQwgw1GGFm8NyQJSGlFKUaBVL0GgWR0C1rA89GI9DdX2UKGgGaAloD0MIZ0gVxWuLckCUhpRSlGgVS9BoFkdAtaw59RaX8nV9lChoBmgJaA9DCHuH26Eh73JAlIaUUpRoFUvBaBZHQLWsRYPoV211fZQoaAZoCWgPQwggRDLk2GFzQJSGlFKUaBVL22gWR0C1rF4QBgeBdX2UKGgGaAloD0MI9diWAScZcUCUhpRSlGgVS45oFkdAtaxyO938oHV9lChoBmgJaA9DCEgzFk1np3NAlIaUUpRoFUvsaBZHQLWsdsmfGuN1fZQoaAZoCWgPQwgYz6ChP9RzQJSGlFKUaBVL42gWR0C1rHjZDiOvdX2UKGgGaAloD0MIA9L+B1h5ckCUhpRSlGgVS8doFkdAtayIrupjt3V9lChoBmgJaA9DCKAWg4epb3JAlIaUUpRoFUvKaBZHQLWsnXnhbW51fZQoaAZoCWgPQwi1xTU+kzJyQJSGlFKUaBVLvGgWR0C1rJ89r434dX2UKGgGaAloD0MIXK5+bJKAc0CUhpRSlGgVS9NoFkdAtazBkmQbM3V9lChoBmgJaA9DCE3Ar5EkRGRAlIaUUpRoFU3oA2gWR0C1rMzVpbljdX2UKGgGaAloD0MIZyyazs4eckCUhpRSlGgVS7NoFkdAtazXlV94NnV9lChoBmgJaA9DCA2NJ4I49HFAlIaUUpRoFUuxaBZHQLWtANo8IRh1fZQoaAZoCWgPQwgK2XkbWw9xQJSGlFKUaBVLi2gWR0C1rRUtRNypdX2UKGgGaAloD0MIe7/RjhuKckCUhpRSlGgVS7doFkdAta0dBC2MKnV9lChoBmgJaA9DCHu8kA7PUnJAlIaUUpRoFUvFaBZHQLWtITq0MPV1fZQoaAZoCWgPQwgpWyTtRvxyQJSGlFKUaBVL42gWR0C1rT/ACW/rdX2UKGgGaAloD0MIO/vKg7REckCUhpRSlGgVS6toFkdAta1P/3nIQ3V9lChoBmgJaA9DCOF6FK7HFnNAlIaUUpRoFUvTaBZHQLWtWXA/LTx1fZQoaAZoCWgPQwhNol7w6edxQJSGlFKUaBVLzmgWR0C1rVrOzIFNdX2UKGgGaAloD0MIwXKEDCRycECUhpRSlGgVS6ZoFkdAta1gtmL9/HV9lChoBmgJaA9DCHGqtTALMnNAlIaUUpRoFUvKaBZHQLWtdwV0tAd1fZQoaAZoCWgPQwiqY5XS8/ByQJSGlFKUaBVLtGgWR0C1rYU2Hck/dX2UKGgGaAloD0MIZmfROxWKckCUhpRSlGgVS71oFkdAta2QBZIQOHV9lChoBmgJaA9DCNdNKa/Vc3NAlIaUUpRoFUvmaBZHQLWtmbxVhkR1fZQoaAZoCWgPQwjThy6o72RwQJSGlFKUaBVLrGgWR0C1raPAO8TSdX2UKGgGaAloD0MIHNMTlniGcUCUhpRSlGgVS7toFkdAta2q57PY4HV9lChoBmgJaA9DCHwKgPEMmEZAlIaUUpRoFUtXaBZHQLWtv8F6iTN1fZQoaAZoCWgPQwgGLo81I4dyQJSGlFKUaBVLpGgWR0C1rciZSeiBdX2UKGgGaAloD0MIfGRz1bxNc0CUhpRSlGgVS8NoFkdAta3H+m3vyHV9lChoBmgJaA9DCKd2hqmtQ3BAlIaUUpRoFUumaBZHQLWt2nlGPPt1fZQoaAZoCWgPQwj0Fg/vOTdzQJSGlFKUaBVLoWgWR0C1rdwDNhVmdX2UKGgGaAloD0MIN091yI1SckCUhpRSlGgVS8poFkdAta4QFB6a9nV9lChoBmgJaA9DCNzUQPO5bnFAlIaUUpRoFUunaBZHQLWuEctoSL91fZQoaAZoCWgPQwh6VWe1QAVxQJSGlFKUaBVLyGgWR0C1ri75dnkDdX2UKGgGaAloD0MIuDtrt52ncECUhpRSlGgVS5FoFkdAta4vv4M4LnV9lChoBmgJaA9DCAdEiCvnDnRAlIaUUpRoFUu3aBZHQLWuM0Gu9vl1fZQoaAZoCWgPQwiTUtDtJSdyQJSGlFKUaBVLyWgWR0C1rk5TMqz7dX2UKGgGaAloD0MIeO49XDKycUCUhpRSlGgVS7RoFkdAta5lK+SKWXV9lChoBmgJaA9DCOIC0ChdtnJAlIaUUpRoFUudaBZHQLWuZe6qbSZ1fZQoaAZoCWgPQwgcCp+tQwtyQJSGlFKUaBVLsGgWR0C1rmuI68xsdX2UKGgGaAloD0MIOuenOE6sckCUhpRSlGgVS9JoFkdAta5wdsBQvnV9lChoBmgJaA9DCPilft4U3nFAlIaUUpRoFUvKaBZHQLWulK7qY7d1fZQoaAZoCWgPQwjfNH12ABJyQJSGlFKUaBVLm2gWR0C1rpb3j+72dX2UKGgGaAloD0MIz4dnCTKHcUCUhpRSlGgVS5toFkdAta6YgZCOWHV9lChoBmgJaA9DCMUCX9Gta3JAlIaUUpRoFUu4aBZHQLWum6+nIhh1fZQoaAZoCWgPQwgxCoLH98xzQJSGlFKUaBVLvGgWR0C1rqffCQ9zdX2UKGgGaAloD0MILSXLSag9ckCUhpRSlGgVS8loFkdAta611JUYK3V9lChoBmgJaA9DCHqobcOoT3JAlIaUUpRoFUuMaBZHQLWuuHlfZ291fZQoaAZoCWgPQwh4Xio25nRyQJSGlFKUaBVLmWgWR0C1rt2kJrtWdX2UKGgGaAloD0MIec4WEFoRckCUhpRSlGgVS51oFkdAta7hggHNYHV9lChoBmgJaA9DCKSNI9biLnBAlIaUUpRoFUuhaBZHQLWu7H3Dej51fZQoaAZoCWgPQwiCctu+h1lyQJSGlFKUaBVLwWgWR0C1rvJhScbzdX2UKGgGaAloD0MIXg8mxUdbckCUhpRSlGgVS7doFkdAta8lhiLEUHV9lChoBmgJaA9DCHYaaan8t3NAlIaUUpRoFUusaBZHQLWvLwXIlt11fZQoaAZoCWgPQwiv0t119iFxQJSGlFKUaBVLsGgWR0C1r0CCjDbbdX2UKGgGaAloD0MItFa0OQ45cECUhpRSlGgVS5NoFkdAta9YrSVnmXV9lChoBmgJaA9DCMaFAyGZG3JAlIaUUpRoFUvVaBZHQLWvZAv+OwR1fZQoaAZoCWgPQwi22O2zSiVxQJSGlFKUaBVLtGgWR0C1r28pXp4bdX2UKGgGaAloD0MIN6lorD2wc0CUhpRSlGgVS9poFkdAta9yk/KQrHV9lChoBmgJaA9DCGnEzD5PK3RAlIaUUpRoFUu+aBZHQLWvfM4LkS51fZQoaAZoCWgPQwjcgTrlEexxQJSGlFKUaBVLwmgWR0C1r4SpJf6XdX2UKGgGaAloD0MIYkuPpjqEckCUhpRSlGgVS85oFkdAta+N7PY4AHV9lChoBmgJaA9DCOSghJm2aXFAlIaUUpRoFUu6aBZHQLWvmIToMa11fZQoaAZoCWgPQwhyGMxfoRZyQJSGlFKUaBVLwGgWR0C1r6FKGtZFdX2UKGgGaAloD0MIVRUaiCXHcUCUhpRSlGgVS5xoFkdAta+1GoaUA3V9lChoBmgJaA9DCKpHGtzWZXFAlIaUUpRoFUuvaBZHQLWvx5Yoy9F1fZQoaAZoCWgPQwig+3Jm+1lxQJSGlFKUaBVLv2gWR0C1r9BRQ79ydX2UKGgGaAloD0MIZ9e9Fcmtc0CUhpRSlGgVS8JoFkdAta/QBLf1pXV9lChoBmgJaA9DCN/EkJwME3JAlIaUUpRoFUubaBZHQLWv5E384xV1fZQoaAZoCWgPQwhiTtAmRw5yQJSGlFKUaBVLmmgWR0C1sBNb1RLsdX2UKGgGaAloD0MIHOviNpokc0CUhpRSlGgVS9NoFkdAtbA3XVbzLHV9lChoBmgJaA9DCKPNcW5TzXBAlIaUUpRoFUuwaBZHQLWwPq0tyxR1fZQoaAZoCWgPQwjncoOhzi5yQJSGlFKUaBVLrGgWR0C1sEqdQO4HdX2UKGgGaAloD0MI63O1Fft3c0CUhpRSlGgVS9FoFkdAtbBKOdXkpHV9lChoBmgJaA9DCBDqIoWyy3FAlIaUUpRoFUuraBZHQLWwVC9h7Vt1fZQoaAZoCWgPQwiwPbMkAJxxQJSGlFKUaBVLi2gWR0C1sFVCHARDdX2UKGgGaAloD0MIyGDFqRYVc0CUhpRSlGgVS8loFkdAtbBr0cwQDnV9lChoBmgJaA9DCPLR4oxh0nBAlIaUUpRoFUuhaBZHQLWwk3AEdNp1fZQoaAZoCWgPQwhZ38DkxrZzQJSGlFKUaBVL22gWR0C1sJ/WDpTudX2UKGgGaAloD0MIv0nToGjCckCUhpRSlGgVS6VoFkdAtbCjnoxHoXV9lChoBmgJaA9DCHrgY7Di/3NAlIaUUpRoFUvpaBZHQLWwqXmNiph1fZQoaAZoCWgPQwi29dN/lnVzQJSGlFKUaBVL2GgWR0C1sKlTrE9/dX2UKGgGaAloD0MIsrlqnqPycUCUhpRSlGgVS5xoFkdAtbCubb1yvXV9lChoBmgJaA9DCBVVv9I5p3FAlIaUUpRoFUvEaBZHQLWwr7eEZix1fZQoaAZoCWgPQwjhCb3+ZLdzQJSGlFKUaBVLxmgWR0C1sMmg8KXwdX2UKGgGaAloD0MIFOgTeZJYcECUhpRSlGgVS59oFkdAtbEKtJWeYnV9lChoBmgJaA9DCB0gmKMHEHJAlIaUUpRoFUuraBZHQLWxElzU7S11fZQoaAZoCWgPQwgptKz7x8JyQJSGlFKUaBVLq2gWR0C1sRnVLBbfdX2UKGgGaAloD0MI5KPFGQMYdECUhpRSlGgVS7doFkdAtbEZ7dBSk3V9lChoBmgJaA9DCLOZQ1KLtHBAlIaUUpRoFUumaBZHQLWxHXz19OR1fZQoaAZoCWgPQwitvU9VIQh0QJSGlFKUaBVL2GgWR0C1sSakRBeHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86b76c71a03df8845724b0b471a61a9895172cb3b980c169ff332bfb61b8f562
|
3 |
+
size 147297
|
ppo-LunarLander-v2/data
CHANGED
@@ -43,21 +43,21 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
-
"learning_rate": 0.
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,15 +70,15 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678788521539218496,
|
52 |
+
"learning_rate": 0.0004,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Ojbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOzHLop4hm8aG5NPpdLBjzy13y9Nb7qPAAAgD8AAIA/OpkQvtQ4mj5yG0E+wKcTv6RnTr3gywY+AAAAAAAAAACaS/g85sGPPyozCz6yq1y/YJicPCgGrDwAAAAAAAAAAM170D2abLQ/WeUoP59NNb6Otmw9mcmrPgAAAAAAAAAAzZsoPdf5XDwubzq+5KqKvobuojxg3H69AAAAAAAAAABzgm4+2IUJP1U47b0/TzK/ZAmIPoCBRr4AAAAAAAAAADMRD71j4WQ/QrDjvYTbhL9BrrW9emnTPAAAAAAAAAAAmh4aPY+2RLzw/EK+PivJvWIUt7k++KQ8AACAPwAAgD+zvFk+kQeHPtoJ0r5MF/K+gdnqPPAVQ74AAAAAAAAAAJqi2TyPzji6wIUBvkwtjLGL1tC6Wt4WMwAAgD8AAIA/w3xsvnuMpD/CmAa/C/yxvptd0r7JZKu+AAAAAAAAAAAAawY9ivRDPKlYGz2biqe+EdbnPUAv2rwAAAAAAAAAAM35p71Ewcs9m5L4Pkavu74TaFo+uIRkPgAAAAAAAAAA2tXlvTdEvD/JxxK/pEqivfBCBr5Er6G+AAAAAAAAAACaqiq9SBuout1pmja17oMxGkiwuNwstbUAAIA/AACAP5qhIj1+JcA/QGs6PhMBm71vQ308l6siPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIa8Hk2J4c0CUhpRSlIwBbJRLuowBdJRHQLWrNRRMvh91fZQoaAZoCWgPQwiF7SdjPB5wQJSGlFKUaBVLomgWR0C1qzrP+n63dX2UKGgGaAloD0MI1XjpJjEBc0CUhpRSlGgVS81oFkdAtatM96kZaXV9lChoBmgJaA9DCH3nFyXowXFAlIaUUpRoFUuUaBZHQLWrodiDujR1fZQoaAZoCWgPQwjtt3ai5DNxQJSGlFKUaBVLpGgWR0C1q+1LBbfQdX2UKGgGaAloD0MIRN0HIHWmcUCUhpRSlGgVS8toFkdAtavvpC8e0XV9lChoBmgJaA9DCHxinSpfanNAlIaUUpRoFUvYaBZHQLWr99Tgl4V1fZQoaAZoCWgPQwgw1GGFm8NyQJSGlFKUaBVL0GgWR0C1rA89GI9DdX2UKGgGaAloD0MIZ0gVxWuLckCUhpRSlGgVS9BoFkdAtaw59RaX8nV9lChoBmgJaA9DCHuH26Eh73JAlIaUUpRoFUvBaBZHQLWsRYPoV211fZQoaAZoCWgPQwggRDLk2GFzQJSGlFKUaBVL22gWR0C1rF4QBgeBdX2UKGgGaAloD0MI9diWAScZcUCUhpRSlGgVS45oFkdAtaxyO938oHV9lChoBmgJaA9DCEgzFk1np3NAlIaUUpRoFUvsaBZHQLWsdsmfGuN1fZQoaAZoCWgPQwgYz6ChP9RzQJSGlFKUaBVL42gWR0C1rHjZDiOvdX2UKGgGaAloD0MIA9L+B1h5ckCUhpRSlGgVS8doFkdAtayIrupjt3V9lChoBmgJaA9DCKAWg4epb3JAlIaUUpRoFUvKaBZHQLWsnXnhbW51fZQoaAZoCWgPQwi1xTU+kzJyQJSGlFKUaBVLvGgWR0C1rJ89r434dX2UKGgGaAloD0MIXK5+bJKAc0CUhpRSlGgVS9NoFkdAtazBkmQbM3V9lChoBmgJaA9DCE3Ar5EkRGRAlIaUUpRoFU3oA2gWR0C1rMzVpbljdX2UKGgGaAloD0MIZyyazs4eckCUhpRSlGgVS7NoFkdAtazXlV94NnV9lChoBmgJaA9DCA2NJ4I49HFAlIaUUpRoFUuxaBZHQLWtANo8IRh1fZQoaAZoCWgPQwgK2XkbWw9xQJSGlFKUaBVLi2gWR0C1rRUtRNypdX2UKGgGaAloD0MIe7/RjhuKckCUhpRSlGgVS7doFkdAta0dBC2MKnV9lChoBmgJaA9DCHu8kA7PUnJAlIaUUpRoFUvFaBZHQLWtITq0MPV1fZQoaAZoCWgPQwgpWyTtRvxyQJSGlFKUaBVL42gWR0C1rT/ACW/rdX2UKGgGaAloD0MIO/vKg7REckCUhpRSlGgVS6toFkdAta1P/3nIQ3V9lChoBmgJaA9DCOF6FK7HFnNAlIaUUpRoFUvTaBZHQLWtWXA/LTx1fZQoaAZoCWgPQwhNol7w6edxQJSGlFKUaBVLzmgWR0C1rVrOzIFNdX2UKGgGaAloD0MIwXKEDCRycECUhpRSlGgVS6ZoFkdAta1gtmL9/HV9lChoBmgJaA9DCHGqtTALMnNAlIaUUpRoFUvKaBZHQLWtdwV0tAd1fZQoaAZoCWgPQwiqY5XS8/ByQJSGlFKUaBVLtGgWR0C1rYU2Hck/dX2UKGgGaAloD0MIZmfROxWKckCUhpRSlGgVS71oFkdAta2QBZIQOHV9lChoBmgJaA9DCNdNKa/Vc3NAlIaUUpRoFUvmaBZHQLWtmbxVhkR1fZQoaAZoCWgPQwjThy6o72RwQJSGlFKUaBVLrGgWR0C1raPAO8TSdX2UKGgGaAloD0MIHNMTlniGcUCUhpRSlGgVS7toFkdAta2q57PY4HV9lChoBmgJaA9DCHwKgPEMmEZAlIaUUpRoFUtXaBZHQLWtv8F6iTN1fZQoaAZoCWgPQwgGLo81I4dyQJSGlFKUaBVLpGgWR0C1rciZSeiBdX2UKGgGaAloD0MIfGRz1bxNc0CUhpRSlGgVS8NoFkdAta3H+m3vyHV9lChoBmgJaA9DCKd2hqmtQ3BAlIaUUpRoFUumaBZHQLWt2nlGPPt1fZQoaAZoCWgPQwj0Fg/vOTdzQJSGlFKUaBVLoWgWR0C1rdwDNhVmdX2UKGgGaAloD0MIN091yI1SckCUhpRSlGgVS8poFkdAta4QFB6a9nV9lChoBmgJaA9DCNzUQPO5bnFAlIaUUpRoFUunaBZHQLWuEctoSL91fZQoaAZoCWgPQwh6VWe1QAVxQJSGlFKUaBVLyGgWR0C1ri75dnkDdX2UKGgGaAloD0MIuDtrt52ncECUhpRSlGgVS5FoFkdAta4vv4M4LnV9lChoBmgJaA9DCAdEiCvnDnRAlIaUUpRoFUu3aBZHQLWuM0Gu9vl1fZQoaAZoCWgPQwiTUtDtJSdyQJSGlFKUaBVLyWgWR0C1rk5TMqz7dX2UKGgGaAloD0MIeO49XDKycUCUhpRSlGgVS7RoFkdAta5lK+SKWXV9lChoBmgJaA9DCOIC0ChdtnJAlIaUUpRoFUudaBZHQLWuZe6qbSZ1fZQoaAZoCWgPQwgcCp+tQwtyQJSGlFKUaBVLsGgWR0C1rmuI68xsdX2UKGgGaAloD0MIOuenOE6sckCUhpRSlGgVS9JoFkdAta5wdsBQvnV9lChoBmgJaA9DCPilft4U3nFAlIaUUpRoFUvKaBZHQLWulK7qY7d1fZQoaAZoCWgPQwjfNH12ABJyQJSGlFKUaBVLm2gWR0C1rpb3j+72dX2UKGgGaAloD0MIz4dnCTKHcUCUhpRSlGgVS5toFkdAta6YgZCOWHV9lChoBmgJaA9DCMUCX9Gta3JAlIaUUpRoFUu4aBZHQLWum6+nIhh1fZQoaAZoCWgPQwgxCoLH98xzQJSGlFKUaBVLvGgWR0C1rqffCQ9zdX2UKGgGaAloD0MILSXLSag9ckCUhpRSlGgVS8loFkdAta611JUYK3V9lChoBmgJaA9DCHqobcOoT3JAlIaUUpRoFUuMaBZHQLWuuHlfZ291fZQoaAZoCWgPQwh4Xio25nRyQJSGlFKUaBVLmWgWR0C1rt2kJrtWdX2UKGgGaAloD0MIec4WEFoRckCUhpRSlGgVS51oFkdAta7hggHNYHV9lChoBmgJaA9DCKSNI9biLnBAlIaUUpRoFUuhaBZHQLWu7H3Dej51fZQoaAZoCWgPQwiCctu+h1lyQJSGlFKUaBVLwWgWR0C1rvJhScbzdX2UKGgGaAloD0MIXg8mxUdbckCUhpRSlGgVS7doFkdAta8lhiLEUHV9lChoBmgJaA9DCHYaaan8t3NAlIaUUpRoFUusaBZHQLWvLwXIlt11fZQoaAZoCWgPQwiv0t119iFxQJSGlFKUaBVLsGgWR0C1r0CCjDbbdX2UKGgGaAloD0MItFa0OQ45cECUhpRSlGgVS5NoFkdAta9YrSVnmXV9lChoBmgJaA9DCMaFAyGZG3JAlIaUUpRoFUvVaBZHQLWvZAv+OwR1fZQoaAZoCWgPQwi22O2zSiVxQJSGlFKUaBVLtGgWR0C1r28pXp4bdX2UKGgGaAloD0MIN6lorD2wc0CUhpRSlGgVS9poFkdAta9yk/KQrHV9lChoBmgJaA9DCGnEzD5PK3RAlIaUUpRoFUu+aBZHQLWvfM4LkS51fZQoaAZoCWgPQwjcgTrlEexxQJSGlFKUaBVLwmgWR0C1r4SpJf6XdX2UKGgGaAloD0MIYkuPpjqEckCUhpRSlGgVS85oFkdAta+N7PY4AHV9lChoBmgJaA9DCOSghJm2aXFAlIaUUpRoFUu6aBZHQLWvmIToMa11fZQoaAZoCWgPQwhyGMxfoRZyQJSGlFKUaBVLwGgWR0C1r6FKGtZFdX2UKGgGaAloD0MIVRUaiCXHcUCUhpRSlGgVS5xoFkdAta+1GoaUA3V9lChoBmgJaA9DCKpHGtzWZXFAlIaUUpRoFUuvaBZHQLWvx5Yoy9F1fZQoaAZoCWgPQwig+3Jm+1lxQJSGlFKUaBVLv2gWR0C1r9BRQ79ydX2UKGgGaAloD0MIZ9e9Fcmtc0CUhpRSlGgVS8JoFkdAta/QBLf1pXV9lChoBmgJaA9DCN/EkJwME3JAlIaUUpRoFUubaBZHQLWv5E384xV1fZQoaAZoCWgPQwhiTtAmRw5yQJSGlFKUaBVLmmgWR0C1sBNb1RLsdX2UKGgGaAloD0MIHOviNpokc0CUhpRSlGgVS9NoFkdAtbA3XVbzLHV9lChoBmgJaA9DCKPNcW5TzXBAlIaUUpRoFUuwaBZHQLWwPq0tyxR1fZQoaAZoCWgPQwjncoOhzi5yQJSGlFKUaBVLrGgWR0C1sEqdQO4HdX2UKGgGaAloD0MI63O1Fft3c0CUhpRSlGgVS9FoFkdAtbBKOdXkpHV9lChoBmgJaA9DCBDqIoWyy3FAlIaUUpRoFUuraBZHQLWwVC9h7Vt1fZQoaAZoCWgPQwiwPbMkAJxxQJSGlFKUaBVLi2gWR0C1sFVCHARDdX2UKGgGaAloD0MIyGDFqRYVc0CUhpRSlGgVS8loFkdAtbBr0cwQDnV9lChoBmgJaA9DCPLR4oxh0nBAlIaUUpRoFUuhaBZHQLWwk3AEdNp1fZQoaAZoCWgPQwhZ38DkxrZzQJSGlFKUaBVL22gWR0C1sJ/WDpTudX2UKGgGaAloD0MIv0nToGjCckCUhpRSlGgVS6VoFkdAtbCjnoxHoXV9lChoBmgJaA9DCHrgY7Di/3NAlIaUUpRoFUvpaBZHQLWwqXmNiph1fZQoaAZoCWgPQwi29dN/lnVzQJSGlFKUaBVL2GgWR0C1sKlTrE9/dX2UKGgGaAloD0MIsrlqnqPycUCUhpRSlGgVS5xoFkdAtbCubb1yvXV9lChoBmgJaA9DCBVVv9I5p3FAlIaUUpRoFUvEaBZHQLWwr7eEZix1fZQoaAZoCWgPQwjhCb3+ZLdzQJSGlFKUaBVLxmgWR0C1sMmg8KXwdX2UKGgGaAloD0MIFOgTeZJYcECUhpRSlGgVS59oFkdAtbEKtJWeYnV9lChoBmgJaA9DCB0gmKMHEHJAlIaUUpRoFUuraBZHQLWxElzU7S11fZQoaAZoCWgPQwgptKz7x8JyQJSGlFKUaBVLq2gWR0C1sRnVLBbfdX2UKGgGaAloD0MI5KPFGQMYdECUhpRSlGgVS7doFkdAtbEZ7dBSk3V9lChoBmgJaA9DCLOZQ1KLtHBAlIaUUpRoFUumaBZHQLWxHXz19OR1fZQoaAZoCWgPQwitvU9VIQh0QJSGlFKUaBVL2GgWR0C1sSakRBeHdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 620,
|
80 |
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f828b7e3484a64ab41069f9cc1dd07d1658e6724b36af236f243e7701e08e9a
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e04c8242e82a5246002e8403e99eb4c44ea864fbea6054bed76f83cfbda3cd66
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 283.9833037412319, "std_reward": 15.753270300462914, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T10:57:33.258765"}
|