Chinese
liswei commited on
Commit
89287c0
·
verified ·
1 Parent(s): 840351d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -3
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - liswei/Taiwan-Text-Excellence-2B
6
+ - liswei/PromptPair-TW
7
+ - yentinglin/TaiwanChat
8
+ base_model: apple/OpenELM
9
+ language:
10
+ - zh
11
+ metrics:
12
+ - perplexity
13
+ pipeline_tag: text-generation
14
+ ---
15
+
16
+ <center>
17
+ <img src="https://huggingface.co/liswei/Taiwan-ELM/resolve/main/Taiwan%20ELM%20Logo.jpeg" alt="Efficient LLM for Taiwan">
18
+ </center>
19
+
20
+ > Efficient LLM for Taiwan
21
+
22
+ # Taiwan ELM
23
+
24
+ Taiwan ELM is a family of Efficient LLMs for Taiwan base on [apple/OpenELM](https://huggingface.co/apple/OpenELM).
25
+ The project aims to provide an efficient model for researchers without access to large-scale computing resources.
26
+
27
+ The model is trained using a custom fork of [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) on 2B Traditional Chinese tokens and 500K instruction samples.
28
+ We will extend the model to train on larger data sets and different base models if there is sufficient demand.
29
+
30
+ ## What is being released?
31
+
32
+ We release both pre-trained base models and instruction tuned variants with 270M and 1.1B parameters.
33
+ Along with the model, datasets used to train the base and instruction-tuned models are also released.
34
+
35
+ List of released models:
36
+ * Taiwan-ELM-270M
37
+ * Taiwan-ELM-1_1B
38
+ * Taiwan-ELM-270M-Instruct
39
+ * Taiwan-ELM-1_1B-Instruct
40
+
41
+ List of released datasets:
42
+ * [liswei/Taiwan-Text-Excellence-2B](https://huggingface.co/datasets/liswei/Taiwan-Text-Excellence-2B)
43
+ * [liswei/PromptPair-TW](https://huggingface.co/datasets/liswei/PromptPair-TW)
44
+
45
+ ## Usage Examples
46
+
47
+ We adapt the LLaMA2 template:
48
+ ```jinja2
49
+ <s>[INST] <<SYS>>
50
+ {{ system_prompt }}
51
+ <</SYS>>
52
+
53
+ {{ user_message }} [/INST]
54
+ ```
55
+
56
+ The model could be load via `AutoModelForCausalLM` with `trust_remote_code=True`:
57
+ ```python
58
+ taiwanelm_270m = AutoModelForCausalLM.from_pretrained("liswei/Taiwan-ELM-270M", trust_remote_code=True)
59
+ ```
60
+
61
+ We also support additional generation methods and speculative generation, please find reference at [OpenELM#usage](https://huggingface.co/apple/OpenELM#usage).