File size: 1,400 Bytes
7df3ce1
ffb3de7
9e44857
7df3ce1
 
ffb3de7
 
7df3ce1
ffb3de7
7df3ce1
ffb3de7
7df3ce1
ffb3de7
 
 
7df3ce1
ffb3de7
 
7df3ce1
ffb3de7
 
7df3ce1
ffb3de7
 
 
7df3ce1
ffb3de7
 
7df3ce1
ffb3de7
 
 
7df3ce1
ffb3de7
 
7df3ce1
ffb3de7
 
 
 
 
7df3ce1
ffb3de7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
inference: false
pipeline_tag: image-text-to-text
---

<br>
<br>

# LLaVA Model Card

## Model details

**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.

**Model date:**
LLaVA-v1.5-7B-LoRA was trained in October 2023.

**Paper or resources for more information:**
https://llava-vl.github.io/

## License
Llama 2 is licensed under the LLAMA 2 Community License, 
Copyright (c) Meta Platforms, Inc. All Rights Reserved.

**Where to send questions or comments about the model:**
https://github.com/haotian-liu/LLaVA/issues

## Intended use
**Primary intended uses:**
The primary use of LLaVA is research on large multimodal models and chatbots.

**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.

## Training dataset
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 450K academic-task-oriented VQA data mixture.
- 40K ShareGPT data.

## Evaluation dataset
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.