liuyanchen1015 commited on
Commit
497e812
1 Parent(s): ddd15c3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Finetuned_FLAN-T5_VALUE_adapterfusion_lr5e-4_bs32
16
+
17
+ This model is a fine-tuned version of [liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4](https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0870
20
+ - Accuracy: 0.8692
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0005
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
51
+ | 0.0862 | 0.08 | 2500 | 0.1059 | 0.8526 |
52
+ | 0.092 | 0.17 | 5000 | 0.1025 | 0.856 |
53
+ | 0.0943 | 0.25 | 7500 | 0.1126 | 0.8516 |
54
+ | 0.0899 | 0.34 | 10000 | 0.0955 | 0.8578 |
55
+ | 0.0896 | 0.42 | 12500 | 0.1046 | 0.8564 |
56
+ | 0.0952 | 0.51 | 15000 | 0.0978 | 0.851 |
57
+ | 0.0901 | 0.59 | 17500 | 0.0958 | 0.8498 |
58
+ | 0.095 | 0.68 | 20000 | 0.0974 | 0.8532 |
59
+ | 0.0955 | 0.76 | 22500 | 0.0982 | 0.853 |
60
+ | 0.0912 | 0.85 | 25000 | 0.0980 | 0.853 |
61
+ | 0.0913 | 0.93 | 27500 | 0.0944 | 0.8528 |
62
+ | 0.0889 | 1.02 | 30000 | 0.0907 | 0.8592 |
63
+ | 0.0871 | 1.1 | 32500 | 0.0933 | 0.855 |
64
+ | 0.0872 | 1.18 | 35000 | 0.0904 | 0.861 |
65
+ | 0.0859 | 1.27 | 37500 | 0.0879 | 0.8594 |
66
+ | 0.0847 | 1.35 | 40000 | 0.0950 | 0.8584 |
67
+ | 0.0827 | 1.44 | 42500 | 0.0909 | 0.8622 |
68
+ | 0.0836 | 1.52 | 45000 | 0.0933 | 0.8552 |
69
+ | 0.0805 | 1.61 | 47500 | 0.0928 | 0.8646 |
70
+ | 0.0799 | 1.69 | 50000 | 0.0905 | 0.8648 |
71
+ | 0.0789 | 1.78 | 52500 | 0.0863 | 0.87 |
72
+ | 0.0786 | 1.86 | 55000 | 0.0907 | 0.8612 |
73
+ | 0.0772 | 1.95 | 57500 | 0.0883 | 0.8672 |
74
+ | 0.075 | 2.03 | 60000 | 0.0886 | 0.8664 |
75
+ | 0.0727 | 2.12 | 62500 | 0.0878 | 0.8688 |
76
+ | 0.0724 | 2.2 | 65000 | 0.0881 | 0.8708 |
77
+ | 0.0729 | 2.28 | 67500 | 0.0879 | 0.8664 |
78
+ | 0.0714 | 2.37 | 70000 | 0.0883 | 0.8694 |
79
+ | 0.0694 | 2.45 | 72500 | 0.0876 | 0.8724 |
80
+ | 0.0698 | 2.54 | 75000 | 0.0869 | 0.8698 |
81
+ | 0.0706 | 2.62 | 77500 | 0.0872 | 0.8712 |
82
+ | 0.0685 | 2.71 | 80000 | 0.0874 | 0.8692 |
83
+ | 0.068 | 2.79 | 82500 | 0.0873 | 0.869 |
84
+ | 0.0685 | 2.88 | 85000 | 0.0863 | 0.8688 |
85
+ | 0.068 | 2.96 | 87500 | 0.0870 | 0.8692 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.26.1
91
+ - Pytorch 1.13.0+cu117
92
+ - Datasets 2.10.1
93
+ - Tokenizers 0.12.1