liuyanyi commited on
Commit
8f08a66
·
verified ·
1 Parent(s): 58db7ad

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./export_bge_m3",
3
+ "architectures": [
4
+ "BgeM3Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_bge_m3.BgeM3Config",
9
+ "AutoModel": "modeling_bge_m3.BgeM3Model"
10
+ },
11
+ "bos_token_id": 0,
12
+ "classifier_dropout": null,
13
+ "colbert_dim": null,
14
+ "eos_token_id": 2,
15
+ "hidden_act": "gelu",
16
+ "hidden_dropout_prob": 0.1,
17
+ "hidden_size": 1024,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 4096,
20
+ "layer_norm_eps": 1e-05,
21
+ "max_position_embeddings": 8194,
22
+ "model_type": "bge-m3",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "output_past": true,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "sentence_pooling_method": "cls",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.37.2",
31
+ "type_vocab_size": 1,
32
+ "unused_tokens": [
33
+ 0,
34
+ 2,
35
+ 1,
36
+ 3
37
+ ],
38
+ "use_cache": true,
39
+ "vocab_size": 250002
40
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.3.1",
4
+ "transformers": "4.37.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ }
7
+ }
configuration_bge_m3.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ # Copied from transformers.models.xlm_roberta.configuration_xlm_roberta.XLMRobertaConfig with XLMRoberta->BgeM3
5
+ class BgeM3Config(PretrainedConfig):
6
+ model_type = "bge-m3"
7
+
8
+ def __init__(
9
+ self,
10
+ vocab_size=30522,
11
+ hidden_size=768,
12
+ num_hidden_layers=12,
13
+ num_attention_heads=12,
14
+ intermediate_size=3072,
15
+ hidden_act="gelu",
16
+ hidden_dropout_prob=0.1,
17
+ attention_probs_dropout_prob=0.1,
18
+ max_position_embeddings=512,
19
+ type_vocab_size=2,
20
+ initializer_range=0.02,
21
+ layer_norm_eps=1e-12,
22
+ pad_token_id=1,
23
+ bos_token_id=0,
24
+ eos_token_id=2,
25
+ position_embedding_type="absolute",
26
+ use_cache=True,
27
+ classifier_dropout=None,
28
+ colbert_dim=None,
29
+ sentence_pooling_method='cls',
30
+ unused_tokens=None,
31
+ **kwargs,
32
+ ):
33
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
34
+
35
+ self.vocab_size = vocab_size
36
+ self.hidden_size = hidden_size
37
+ self.num_hidden_layers = num_hidden_layers
38
+ self.num_attention_heads = num_attention_heads
39
+ self.hidden_act = hidden_act
40
+ self.intermediate_size = intermediate_size
41
+ self.hidden_dropout_prob = hidden_dropout_prob
42
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
43
+ self.max_position_embeddings = max_position_embeddings
44
+ self.type_vocab_size = type_vocab_size
45
+ self.initializer_range = initializer_range
46
+ self.layer_norm_eps = layer_norm_eps
47
+ self.position_embedding_type = position_embedding_type
48
+ self.use_cache = use_cache
49
+ self.classifier_dropout = classifier_dropout
50
+ self.colbert_dim = colbert_dim
51
+ self.sentence_pooling_method = sentence_pooling_method
52
+ self.unused_tokens = unused_tokens
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cfba41811196728d7604ac67da00fd749beeba0e6557eb685620898a032f1eb
3
+ size 2271071852
modeling_bge_m3.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from dataclasses import dataclass
3
+ from typing import Dict, List, Optional, Tuple, Union
4
+
5
+ import torch
6
+ from torch import nn
7
+ from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions, ModelOutput
8
+ from transformers.models.xlm_roberta import (
9
+ XLMRobertaModel,
10
+ XLMRobertaPreTrainedModel,
11
+ )
12
+
13
+ from .configuration_bge_m3 import BgeM3Config
14
+
15
+
16
+ @dataclass
17
+ class BgeM3ModelOutput(ModelOutput):
18
+ last_hidden_state: torch.FloatTensor = None
19
+ pooler_output: torch.FloatTensor = None
20
+ dense_output: torch.FloatTensor = None
21
+ colbert_output: Optional[List[torch.FloatTensor]] = None
22
+ sparse_output: Optional[Dict[int, float]] = None
23
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
24
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
25
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
26
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
27
+
28
+
29
+ class BgeM3Model(XLMRobertaPreTrainedModel):
30
+ config_class = BgeM3Config
31
+
32
+ def __init__(self, config: BgeM3Config):
33
+ super().__init__(config)
34
+ self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
35
+ # TODO: Check the dtype of these linear layers
36
+ self.colbert_linear = nn.Linear(
37
+ in_features=config.hidden_size,
38
+ out_features=config.hidden_size if config.colbert_dim is None else config.colbert_dim,
39
+ )
40
+ self.sparse_linear = nn.Linear(in_features=config.hidden_size, out_features=1)
41
+ self.sentence_pooling_method = config.sentence_pooling_method
42
+
43
+ self.init_weights()
44
+
45
+ def dense_embedding(self, hidden_state, mask):
46
+ if self.sentence_pooling_method == "cls":
47
+ return hidden_state[:, 0]
48
+ elif self.sentence_pooling_method == "mean":
49
+ s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
50
+ d = mask.sum(axis=1, keepdim=True).float()
51
+ return s / d
52
+
53
+ def sparse_embedding(self, hidden_state, input_ids, return_embedding: bool = False):
54
+ token_weights = torch.relu(self.sparse_linear(hidden_state))
55
+ if not return_embedding:
56
+ return token_weights
57
+
58
+ sparse_embedding = torch.zeros(
59
+ input_ids.size(0),
60
+ input_ids.size(1),
61
+ self.config.vocab_size,
62
+ dtype=token_weights.dtype,
63
+ device=token_weights.device,
64
+ )
65
+ sparse_embedding = torch.scatter(sparse_embedding, dim=-1, index=input_ids.unsqueeze(-1), src=token_weights)
66
+
67
+ unused_tokens = self.config.unused_tokens
68
+ sparse_embedding = torch.max(sparse_embedding, dim=1).values
69
+ sparse_embedding[:, unused_tokens] *= 0.0
70
+ return sparse_embedding
71
+
72
+ def colbert_embedding(self, last_hidden_state, mask):
73
+ colbert_vecs = self.colbert_linear(last_hidden_state[:, 1:])
74
+ colbert_vecs = colbert_vecs * mask[:, 1:][:, :, None].float()
75
+ return colbert_vecs
76
+
77
+ def _process_token_weights(self, token_weights, input_ids, mask):
78
+ token_weights = token_weights.squeeze(-1)
79
+ # conver to dict
80
+ all_result = []
81
+ unused_tokens = self.config.unused_tokens
82
+ unused_tokens = torch.tensor(unused_tokens, device=input_ids.device)
83
+
84
+ # 获取有效的 token 的索引
85
+ valid_indices = ~torch.isin(input_ids, unused_tokens)
86
+ # weight必须大于0
87
+ valid_indices = (valid_indices & (token_weights > 0)).bool()
88
+ # 结合 attention mask,获取有效的 token 的索引
89
+ valid_indices = (valid_indices & mask).bool()
90
+
91
+ for i, valid in enumerate(valid_indices):
92
+ result = defaultdict(int)
93
+
94
+ # 获取有效的 weights 和 ids
95
+ valid_weights = token_weights[i][valid]
96
+ valid_ids = input_ids[i][valid]
97
+
98
+ # 获取每个 id 的最大权重
99
+ unique_ids, inverse_indices = torch.unique(valid_ids, return_inverse=True)
100
+
101
+ # 使用一个循环来找到每个 unique id 的最大权重
102
+ for i in range(unique_ids.shape[0]):
103
+ id_mask = inverse_indices == i
104
+ result[str(unique_ids[i].item())] = valid_weights[id_mask].max().item()
105
+
106
+ all_result.append(result)
107
+ # token_weights = np.ceil(token_weights * 100)
108
+ # for w, idx, num in zip(token_weights, input_ids, tokens_num):
109
+ # r = defaultdict(int)
110
+ # token_weight = w[:num]
111
+ # idx = idx[:num]
112
+
113
+ # for t_w, t_idx in zip(token_weight, idx):
114
+ # if t_idx.item() not in unused_tokens:
115
+ # t_idx = str(t_idx.item())
116
+ # if t_w > r[t_idx]:
117
+ # r[t_idx] = t_w.item()
118
+
119
+ # result.append(r)
120
+
121
+ # if idx not in unused_tokens and w > 0:
122
+ # idx = str(idx)
123
+ # # w = int(w)
124
+ # if w > result[idx]:
125
+ # result[idx] = w
126
+ return all_result
127
+
128
+ def _process_colbert_vecs(self, colbert_vecs, tokens_num) -> List[torch.Tensor]:
129
+ # delte the vectors of padding tokens
130
+ vecs = []
131
+ for i in range(len(tokens_num)):
132
+ vecs.append(colbert_vecs[i, : tokens_num[i] - 1])
133
+ return vecs
134
+
135
+ # Copied from transformers.models.bert.modeling_bert.BertModel.forward
136
+ def forward(
137
+ self,
138
+ input_ids: Optional[torch.Tensor] = None,
139
+ attention_mask: Optional[torch.Tensor] = None,
140
+ token_type_ids: Optional[torch.Tensor] = None,
141
+ position_ids: Optional[torch.Tensor] = None,
142
+ head_mask: Optional[torch.Tensor] = None,
143
+ inputs_embeds: Optional[torch.Tensor] = None,
144
+ encoder_hidden_states: Optional[torch.Tensor] = None,
145
+ encoder_attention_mask: Optional[torch.Tensor] = None,
146
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
147
+ use_cache: Optional[bool] = None,
148
+ output_attentions: Optional[bool] = None,
149
+ output_hidden_states: Optional[bool] = None,
150
+ return_dict: Optional[bool] = None,
151
+ ) -> Union[Tuple[torch.Tensor], BgeM3ModelOutput]:
152
+ roberta_output: BaseModelOutputWithPoolingAndCrossAttentions = self.roberta(
153
+ input_ids,
154
+ attention_mask=attention_mask,
155
+ token_type_ids=token_type_ids,
156
+ position_ids=position_ids,
157
+ head_mask=head_mask,
158
+ inputs_embeds=inputs_embeds,
159
+ encoder_hidden_states=encoder_hidden_states,
160
+ encoder_attention_mask=encoder_attention_mask,
161
+ past_key_values=past_key_values,
162
+ use_cache=use_cache,
163
+ output_attentions=output_attentions,
164
+ output_hidden_states=output_hidden_states,
165
+ return_dict=True,
166
+ )
167
+
168
+ last_hidden_state = roberta_output.last_hidden_state
169
+ dense_output = self.dense_embedding(last_hidden_state, attention_mask)
170
+
171
+ tokens_num = attention_mask.sum(dim=1)
172
+ colbert_output = self.colbert_embedding(last_hidden_state, attention_mask)
173
+ colbert_output = self._process_colbert_vecs(colbert_output, tokens_num)
174
+
175
+ sparse_output = self.sparse_embedding(last_hidden_state, input_ids)
176
+ sparse_output = self._process_token_weights(sparse_output, input_ids, attention_mask)
177
+
178
+ if not return_dict:
179
+ return (
180
+ last_hidden_state,
181
+ roberta_output.pooler_output,
182
+ dense_output,
183
+ colbert_output,
184
+ sparse_output,
185
+ roberta_output.hidden_states,
186
+ roberta_output.past_key_values,
187
+ roberta_output.attentions,
188
+ roberta_output.cross_attentions,
189
+ )
190
+
191
+ return BgeM3ModelOutput(
192
+ last_hidden_state=last_hidden_state,
193
+ dense_output=dense_output,
194
+ pooler_output=roberta_output.pooler_output,
195
+ colbert_output=colbert_output,
196
+ sparse_output=sparse_output,
197
+ hidden_states=roberta_output.hidden_states,
198
+ past_key_values=roberta_output.past_key_values,
199
+ attentions=roberta_output.attentions,
200
+ cross_attentions=roberta_output.cross_attentions,
201
+ )
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6710678b12670bc442b99edc952c4d996ae309a7020c1fa0096dd245c2faf790
3
+ size 17082821
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }