---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: mixtral-remove-negative-data
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
adam_beta2: 0.95
adam_epsilon: 1.0e-05
adapter: qlora
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
bf16: auto
chat_template: inst
dataset_prepared_path: last_run_prepared
datasets:
- conversation: mistral
path: dd7ba3a8030a4c7382d51a5d894f5cb4/./data/with_function_response/function_used_training.jsonl
type: sharegpt
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 0.2
eval_table_size: null
flash_attention: true
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: liuylhf/mixtral-remove-negative-data
hub_strategy: end
is_mistral_derived_model: true
learning_rate: 0.001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
micro_batch_size: 2
model_config:
output_router_logits: true
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: dd7ba3a8030a4c7382d51a5d894f5cb4/model
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
save_steps: 0.1
sequence_len: 8192
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.01
wandb_log_model: end
wandb_name: mixtral-instruct-raw-data-v3
wandb_project: function-call
warmup_steps: 10
weight_decay: 0
xformers_attention: null
```
# mixtral-remove-negative-data
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.9579 | 0.01 | 1 | 4.0485 |
| 0.148 | 0.2 | 36 | 0.1565 |
| 0.1075 | 0.4 | 72 | 0.1138 |
| 0.099 | 0.6 | 108 | 0.1018 |
| 0.0954 | 0.8 | 144 | 0.0969 |
| 0.0945 | 1.0 | 180 | 0.0955 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0