liwii commited on
Commit
e3831ea
1 Parent(s): f863817

factual-consistency-multilabel-classification-ja

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: line-corporation/line-distilbert-base-japanese
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: factual-consistency-multilabel-classification-ja
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # factual-consistency-multilabel-classification-ja
17
+
18
+ This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4824
21
+ - Accuracy: 0.7861
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 64
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - distributed_type: tpu
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 2
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 306 | 0.4880 | 0.7861 |
54
+ | 0.5189 | 2.0 | 612 | 0.4824 | 0.7861 |
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - Transformers 4.34.0
60
+ - Pytorch 2.0.0+cu118
61
+ - Datasets 2.14.5
62
+ - Tokenizers 0.14.0