Training in progress, epoch 1
Browse files- added_tokens.json +7 -0
- config.json +32 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- spiece.model +3 -0
- tokenizer_config.json +76 -0
- train-v1.1.json +0 -0
- train_factual_consistency.ipynb +1489 -0
- training_args.bin +3 -0
- utils.py +108 -0
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 0,
|
3 |
+
"<unk>": 1,
|
4 |
+
"[CLS]": 2,
|
5 |
+
"[MASK]": 4,
|
6 |
+
"[SEP]": 3
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "line-corporation/line-distilbert-base-japanese",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"ConsistentSentenceRegressor"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"label2id": {
|
16 |
+
"LABEL_0": 0
|
17 |
+
},
|
18 |
+
"max_position_embeddings": 512,
|
19 |
+
"model_type": "distilbert",
|
20 |
+
"n_heads": 12,
|
21 |
+
"n_layers": 6,
|
22 |
+
"output_hidden_states": true,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"problem_type": "regression",
|
25 |
+
"qa_dropout": 0.1,
|
26 |
+
"seq_classif_dropout": 0.2,
|
27 |
+
"sinusoidal_pos_embds": true,
|
28 |
+
"tie_weights_": true,
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.34.0",
|
31 |
+
"vocab_size": 32768
|
32 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1f295326993252bd9df044d41ab49e3250373aee8f37f46cb0072b73e52d1f7
|
3 |
+
size 274752173
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfafc8c0662d9c8f39621a64c74260f2ad120310c8dd24886de2dddaf599b4e
|
3 |
+
size 439391
|
tokenizer_config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<unk>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"auto_map": {
|
46 |
+
"AutoTokenizer": [
|
47 |
+
"line-corporation/line-distilbert-base-japanese--distilbert_japanese_tokenizer.DistilBertJapaneseTokenizer",
|
48 |
+
null
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"bos_token": "[CLS]",
|
52 |
+
"clean_up_tokenization_spaces": true,
|
53 |
+
"cls_token": "[CLS]",
|
54 |
+
"do_lower_case": true,
|
55 |
+
"do_subword_tokenize": true,
|
56 |
+
"do_word_tokenize": true,
|
57 |
+
"eos_token": "[SEP]",
|
58 |
+
"jumanpp_kwargs": null,
|
59 |
+
"keep_accents": true,
|
60 |
+
"mask_token": "[MASK]",
|
61 |
+
"mecab_kwargs": {
|
62 |
+
"mecab_dic": "unidic_lite"
|
63 |
+
},
|
64 |
+
"model_max_length": 1000000000000000019884624838656,
|
65 |
+
"never_split": null,
|
66 |
+
"pad_token": "<pad>",
|
67 |
+
"remove_space": true,
|
68 |
+
"sep_token": "[SEP]",
|
69 |
+
"subword_tokenizer_type": "sentencepiece",
|
70 |
+
"sudachi_kwargs": null,
|
71 |
+
"tokenize_chinese_chars": false,
|
72 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
73 |
+
"tokenizer_file": null,
|
74 |
+
"unk_token": "<unk>",
|
75 |
+
"word_tokenizer_type": "mecab"
|
76 |
+
}
|
train-v1.1.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_factual_consistency.ipynb
ADDED
@@ -0,0 +1,1489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "b12ae8a3-9e08-402c-894c-31697fad6c56",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "6e13508dc55b4712a4d6e91647a932a3",
|
13 |
+
"version_major": 2,
|
14 |
+
"version_minor": 0
|
15 |
+
},
|
16 |
+
"text/plain": [
|
17 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
"metadata": {},
|
21 |
+
"output_type": "display_data"
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"source": [
|
25 |
+
"from huggingface_hub import notebook_login\n",
|
26 |
+
"\n",
|
27 |
+
"notebook_login()"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 2,
|
33 |
+
"id": "160c80c1-0ca4-45df-8171-87cd3c88a223",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"\n",
|
38 |
+
"from transformers import (\n",
|
39 |
+
" AutoTokenizer,\n",
|
40 |
+
" DataCollatorWithPadding,\n",
|
41 |
+
" Trainer,\n",
|
42 |
+
" TrainingArguments,\n",
|
43 |
+
")\n",
|
44 |
+
"from utils import ConsistentSentenceRegressor, get_metrics, load_dataset"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 3,
|
50 |
+
"id": "25800588-5d42-4524-9dc6-a6a0c180b8b0",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"name": "stdout",
|
55 |
+
"output_type": "stream",
|
56 |
+
"text": [
|
57 |
+
" text label\n",
|
58 |
+
"512 カーキ色の服を着た男性が、口元にリンゴを当てています。[SEP]カーキ色の服を着た男性が、口... 0.0\n",
|
59 |
+
"513 男性がグラウンドでボールを投げています。[SEP]白い髯を生やした男性がボールを投げています。 0.5\n",
|
60 |
+
"514 椅子に座った子供が、手づかみで食事をしています。[SEP]椅子に座った子供が手づかみで、食事... 1.0\n",
|
61 |
+
"515 プロペラ機が何台も駐機しています。[SEP]プロペラ機が何台も連なって飛んでいます。 0.0\n",
|
62 |
+
"516 消火栓から水が勢いよく噴き出しています。[SEP]水が噴き出している消火栓の水を浴びるように... 0.5\n",
|
63 |
+
"517 冷蔵庫のないキッチンにナイフとフォークが置かれています。[SEP]冷蔵庫の置かれたキッチンに... 0.0\n",
|
64 |
+
"518 うみでサーフィンをしているひとがいます。[SEP]黒いウェットスーツを着た人がサーフボードに... 0.5\n",
|
65 |
+
"519 池から白い鳥が飛び立っています。[SEP]森にある水の上を鳥が飛んでいます。 0.5\n",
|
66 |
+
"520 丈夫なビーチパラソルが立っています。[SEP]ビーチパラソルの支柱が折れ曲がっています。 0.0\n",
|
67 |
+
"521 白髪の男性が少女から花束を受け取っています。[SEP]花束を持った男性の前に多くの子供たちが... 0.5\n",
|
68 |
+
" text label\n",
|
69 |
+
"0 赤いひとつの傘に、二人の人が入っています。[SEP]歩道を歩く通行人が傘をさして歩いています。 0.5\n",
|
70 |
+
"1 川を小さなボートが進んで行きます。[SEP]川を豪華客船が進んでいきます。 0.0\n",
|
71 |
+
"2 ゲレンデのこぶでスキージャンプしています。[SEP]雪上でモーグルを楽しむ水色のウェアを着た女性。 0.5\n",
|
72 |
+
"3 黒いお皿に乗っているピザをカットしています。[SEP]黒い皿の上にピザが盛られています。 1.0\n",
|
73 |
+
"4 女性が目を細めて携帯電話で話をしています。[SEP]目を細めた女性が携帯電話で話をしています。 1.0\n",
|
74 |
+
"5 バナナやパパイヤなどの果物が売られている。[SEP]台の上にはバナナなどの青果が並べられています。 0.5\n",
|
75 |
+
"6 ヘッドライトを点灯させた白いバスが駐車場に止まっています。[SEP]ライトを点灯させているバ... 1.0\n",
|
76 |
+
"7 水面の上に、カイトサーフィンの凧が揚がっています。[SEP]海の上に水上スポーツ用の凧が揚が... 0.5\n",
|
77 |
+
"8 ホットドッグを野外で食べている人たちです。[SEP]家の中でホットドッグを食べている。 0.0\n",
|
78 |
+
"9 草が生い茂っている所に、3頭のゾウがいます。[SEP]草むらの中に三頭のゾウが立っているとこ... 0.5\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"data": {
|
83 |
+
"application/vnd.jupyter.widget-view+json": {
|
84 |
+
"model_id": "37636d1b642c4b5382572caabd6f7466",
|
85 |
+
"version_major": 2,
|
86 |
+
"version_minor": 0
|
87 |
+
},
|
88 |
+
"text/plain": [
|
89 |
+
"Map: 0%| | 0/19561 [00:00<?, ? examples/s]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"metadata": {},
|
93 |
+
"output_type": "display_data"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"name": "stderr",
|
97 |
+
"output_type": "stream",
|
98 |
+
"text": [
|
99 |
+
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no padding.\n",
|
100 |
+
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"data": {
|
105 |
+
"application/vnd.jupyter.widget-view+json": {
|
106 |
+
"model_id": "901f21c168624db8aa6e8881dd30df60",
|
107 |
+
"version_major": 2,
|
108 |
+
"version_minor": 0
|
109 |
+
},
|
110 |
+
"text/plain": [
|
111 |
+
"Map: 0%| | 0/512 [00:00<?, ? examples/s]"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
"metadata": {},
|
115 |
+
"output_type": "display_data"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"line-corporation/line-distilbert-base-japanese\")\n",
|
120 |
+
"dataset = load_dataset('train-v1.1.json')\n",
|
121 |
+
"tokenized_dataset = dataset.map(\n",
|
122 |
+
" lambda examples: tokenizer(examples[\"text\"], padding='max_length', truncation=True), batched=True\n",
|
123 |
+
")"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 7,
|
129 |
+
"id": "6bc83d4c-378c-4313-b641-8ead0c02f715",
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"name": "stdout",
|
134 |
+
"output_type": "stream",
|
135 |
+
"text": [
|
136 |
+
"torch.Size([64, 60])\n",
|
137 |
+
"torch.Size([64, 1])\n",
|
138 |
+
"torch.Size([64])\n"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"text/html": [
|
144 |
+
"\n",
|
145 |
+
" <div>\n",
|
146 |
+
" \n",
|
147 |
+
" <progress value='406' max='30600' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
148 |
+
" [ 406/30600 00:45 < 56:06, 8.97 it/s, Epoch 1.32/100]\n",
|
149 |
+
" </div>\n",
|
150 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
151 |
+
" <thead>\n",
|
152 |
+
" <tr style=\"text-align: left;\">\n",
|
153 |
+
" <th>Epoch</th>\n",
|
154 |
+
" <th>Training Loss</th>\n",
|
155 |
+
" <th>Validation Loss</th>\n",
|
156 |
+
" </tr>\n",
|
157 |
+
" </thead>\n",
|
158 |
+
" <tbody>\n",
|
159 |
+
" <tr>\n",
|
160 |
+
" <td>1</td>\n",
|
161 |
+
" <td>No log</td>\n",
|
162 |
+
" <td>-3.658799</td>\n",
|
163 |
+
" </tr>\n",
|
164 |
+
" </tbody>\n",
|
165 |
+
"</table><p>"
|
166 |
+
],
|
167 |
+
"text/plain": [
|
168 |
+
"<IPython.core.display.HTML object>"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
"metadata": {},
|
172 |
+
"output_type": "display_data"
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"name": "stdout",
|
176 |
+
"output_type": "stream",
|
177 |
+
"text": [
|
178 |
+
"torch.Size([64, 63])\n",
|
179 |
+
"torch.Size([64, 1])\n",
|
180 |
+
"torch.Size([64])\n",
|
181 |
+
"torch.Size([64, 59])\n",
|
182 |
+
"torch.Size([64, 1])\n",
|
183 |
+
"torch.Size([64])\n",
|
184 |
+
"torch.Size([64, 52])\n",
|
185 |
+
"torch.Size([64, 1])\n",
|
186 |
+
"torch.Size([64])\n",
|
187 |
+
"torch.Size([64, 56])\n",
|
188 |
+
"torch.Size([64, 1])\n",
|
189 |
+
"torch.Size([64])\n",
|
190 |
+
"torch.Size([64, 63])\n",
|
191 |
+
"torch.Size([64, 1])\n",
|
192 |
+
"torch.Size([64])\n",
|
193 |
+
"torch.Size([64, 63])\n",
|
194 |
+
"torch.Size([64, 1])\n",
|
195 |
+
"torch.Size([64])\n",
|
196 |
+
"torch.Size([64, 57])\n",
|
197 |
+
"torch.Size([64, 1])\n",
|
198 |
+
"torch.Size([64])\n",
|
199 |
+
"torch.Size([64, 56])\n",
|
200 |
+
"torch.Size([64, 1])\n",
|
201 |
+
"torch.Size([64])\n",
|
202 |
+
"torch.Size([64, 77])\n",
|
203 |
+
"torch.Size([64, 1])\n",
|
204 |
+
"torch.Size([64])\n",
|
205 |
+
"torch.Size([64, 60])\n",
|
206 |
+
"torch.Size([64, 1])\n",
|
207 |
+
"torch.Size([64])\n",
|
208 |
+
"torch.Size([64, 72])\n",
|
209 |
+
"torch.Size([64, 1])\n",
|
210 |
+
"torch.Size([64])\n",
|
211 |
+
"torch.Size([64, 60])\n",
|
212 |
+
"torch.Size([64, 1])\n",
|
213 |
+
"torch.Size([64])\n",
|
214 |
+
"torch.Size([64, 56])\n",
|
215 |
+
"torch.Size([64, 1])\n",
|
216 |
+
"torch.Size([64])\n",
|
217 |
+
"torch.Size([64, 50])\n",
|
218 |
+
"torch.Size([64, 1])\n",
|
219 |
+
"torch.Size([64])\n",
|
220 |
+
"torch.Size([64, 61])\n",
|
221 |
+
"torch.Size([64, 1])\n",
|
222 |
+
"torch.Size([64])\n",
|
223 |
+
"torch.Size([64, 69])\n",
|
224 |
+
"torch.Size([64, 1])\n",
|
225 |
+
"torch.Size([64])\n",
|
226 |
+
"torch.Size([64, 62])\n",
|
227 |
+
"torch.Size([64, 1])\n",
|
228 |
+
"torch.Size([64])\n",
|
229 |
+
"torch.Size([64, 56])\n",
|
230 |
+
"torch.Size([64, 1])\n",
|
231 |
+
"torch.Size([64])\n",
|
232 |
+
"torch.Size([64, 50])\n",
|
233 |
+
"torch.Size([64, 1])\n",
|
234 |
+
"torch.Size([64])\n",
|
235 |
+
"torch.Size([64, 63])\n",
|
236 |
+
"torch.Size([64, 1])\n",
|
237 |
+
"torch.Size([64])\n",
|
238 |
+
"torch.Size([64, 52])\n",
|
239 |
+
"torch.Size([64, 1])\n",
|
240 |
+
"torch.Size([64])\n",
|
241 |
+
"torch.Size([64, 80])\n",
|
242 |
+
"torch.Size([64, 1])\n",
|
243 |
+
"torch.Size([64])\n",
|
244 |
+
"torch.Size([64, 71])\n",
|
245 |
+
"torch.Size([64, 1])\n",
|
246 |
+
"torch.Size([64])\n",
|
247 |
+
"torch.Size([64, 52])\n",
|
248 |
+
"torch.Size([64, 1])\n",
|
249 |
+
"torch.Size([64])\n",
|
250 |
+
"torch.Size([64, 54])\n",
|
251 |
+
"torch.Size([64, 1])\n",
|
252 |
+
"torch.Size([64])\n",
|
253 |
+
"torch.Size([64, 51])\n",
|
254 |
+
"torch.Size([64, 1])\n",
|
255 |
+
"torch.Size([64])\n",
|
256 |
+
"torch.Size([64, 51])\n",
|
257 |
+
"torch.Size([64, 1])\n",
|
258 |
+
"torch.Size([64])\n",
|
259 |
+
"torch.Size([64, 51])\n",
|
260 |
+
"torch.Size([64, 1])\n",
|
261 |
+
"torch.Size([64])\n",
|
262 |
+
"torch.Size([64, 70])\n",
|
263 |
+
"torch.Size([64, 1])\n",
|
264 |
+
"torch.Size([64])\n",
|
265 |
+
"torch.Size([64, 64])\n",
|
266 |
+
"torch.Size([64, 1])\n",
|
267 |
+
"torch.Size([64])\n",
|
268 |
+
"torch.Size([64, 54])\n",
|
269 |
+
"torch.Size([64, 1])\n",
|
270 |
+
"torch.Size([64])\n",
|
271 |
+
"torch.Size([64, 55])\n",
|
272 |
+
"torch.Size([64, 1])\n",
|
273 |
+
"torch.Size([64])\n",
|
274 |
+
"torch.Size([64, 53])\n",
|
275 |
+
"torch.Size([64, 1])\n",
|
276 |
+
"torch.Size([64])\n",
|
277 |
+
"torch.Size([64, 76])\n",
|
278 |
+
"torch.Size([64, 1])\n",
|
279 |
+
"torch.Size([64])\n",
|
280 |
+
"torch.Size([64, 53])\n",
|
281 |
+
"torch.Size([64, 1])\n",
|
282 |
+
"torch.Size([64])\n",
|
283 |
+
"torch.Size([64, 55])\n",
|
284 |
+
"torch.Size([64, 1])\n",
|
285 |
+
"torch.Size([64])\n",
|
286 |
+
"torch.Size([64, 70])\n",
|
287 |
+
"torch.Size([64, 1])\n",
|
288 |
+
"torch.Size([64])\n",
|
289 |
+
"torch.Size([64, 59])\n",
|
290 |
+
"torch.Size([64, 1])\n",
|
291 |
+
"torch.Size([64])\n",
|
292 |
+
"torch.Size([64, 59])\n",
|
293 |
+
"torch.Size([64, 1])\n",
|
294 |
+
"torch.Size([64])\n",
|
295 |
+
"torch.Size([64, 68])\n",
|
296 |
+
"torch.Size([64, 1])\n",
|
297 |
+
"torch.Size([64])\n",
|
298 |
+
"torch.Size([64, 71])\n",
|
299 |
+
"torch.Size([64, 1])\n",
|
300 |
+
"torch.Size([64])\n",
|
301 |
+
"torch.Size([64, 58])\n",
|
302 |
+
"torch.Size([64, 1])\n",
|
303 |
+
"torch.Size([64])\n",
|
304 |
+
"torch.Size([64, 47])\n",
|
305 |
+
"torch.Size([64, 1])\n",
|
306 |
+
"torch.Size([64])\n",
|
307 |
+
"torch.Size([64, 65])\n",
|
308 |
+
"torch.Size([64, 1])\n",
|
309 |
+
"torch.Size([64])\n",
|
310 |
+
"torch.Size([64, 67])\n",
|
311 |
+
"torch.Size([64, 1])\n",
|
312 |
+
"torch.Size([64])\n",
|
313 |
+
"torch.Size([64, 67])\n",
|
314 |
+
"torch.Size([64, 1])\n",
|
315 |
+
"torch.Size([64])\n",
|
316 |
+
"torch.Size([64, 77])\n",
|
317 |
+
"torch.Size([64, 1])\n",
|
318 |
+
"torch.Size([64])\n",
|
319 |
+
"torch.Size([64, 55])\n",
|
320 |
+
"torch.Size([64, 1])\n",
|
321 |
+
"torch.Size([64])\n",
|
322 |
+
"torch.Size([64, 51])\n",
|
323 |
+
"torch.Size([64, 1])\n",
|
324 |
+
"torch.Size([64])\n",
|
325 |
+
"torch.Size([64, 64])\n",
|
326 |
+
"torch.Size([64, 1])\n",
|
327 |
+
"torch.Size([64])\n",
|
328 |
+
"torch.Size([64, 61])\n",
|
329 |
+
"torch.Size([64, 1])\n",
|
330 |
+
"torch.Size([64])\n",
|
331 |
+
"torch.Size([64, 79])\n",
|
332 |
+
"torch.Size([64, 1])\n",
|
333 |
+
"torch.Size([64])\n",
|
334 |
+
"torch.Size([64, 47])\n",
|
335 |
+
"torch.Size([64, 1])\n",
|
336 |
+
"torch.Size([64])\n",
|
337 |
+
"torch.Size([64, 59])\n",
|
338 |
+
"torch.Size([64, 1])\n",
|
339 |
+
"torch.Size([64])\n",
|
340 |
+
"torch.Size([64, 63])\n",
|
341 |
+
"torch.Size([64, 1])\n",
|
342 |
+
"torch.Size([64])\n",
|
343 |
+
"torch.Size([64, 53])\n",
|
344 |
+
"torch.Size([64, 1])\n",
|
345 |
+
"torch.Size([64])\n",
|
346 |
+
"torch.Size([64, 79])\n",
|
347 |
+
"torch.Size([64, 1])\n",
|
348 |
+
"torch.Size([64])\n",
|
349 |
+
"torch.Size([64, 55])\n",
|
350 |
+
"torch.Size([64, 1])\n",
|
351 |
+
"torch.Size([64])\n",
|
352 |
+
"torch.Size([64, 77])\n",
|
353 |
+
"torch.Size([64, 1])\n",
|
354 |
+
"torch.Size([64])\n",
|
355 |
+
"torch.Size([64, 67])\n",
|
356 |
+
"torch.Size([64, 1])\n",
|
357 |
+
"torch.Size([64])\n",
|
358 |
+
"torch.Size([64, 57])\n",
|
359 |
+
"torch.Size([64, 1])\n",
|
360 |
+
"torch.Size([64])\n",
|
361 |
+
"torch.Size([64, 67])\n",
|
362 |
+
"torch.Size([64, 1])\n",
|
363 |
+
"torch.Size([64])\n",
|
364 |
+
"torch.Size([64, 70])\n",
|
365 |
+
"torch.Size([64, 1])\n",
|
366 |
+
"torch.Size([64])\n",
|
367 |
+
"torch.Size([64, 48])\n",
|
368 |
+
"torch.Size([64, 1])\n",
|
369 |
+
"torch.Size([64])\n",
|
370 |
+
"torch.Size([64, 80])\n",
|
371 |
+
"torch.Size([64, 1])\n",
|
372 |
+
"torch.Size([64])\n",
|
373 |
+
"torch.Size([64, 54])\n",
|
374 |
+
"torch.Size([64, 1])\n",
|
375 |
+
"torch.Size([64])\n",
|
376 |
+
"torch.Size([64, 50])\n",
|
377 |
+
"torch.Size([64, 1])\n",
|
378 |
+
"torch.Size([64])\n",
|
379 |
+
"torch.Size([64, 64])\n",
|
380 |
+
"torch.Size([64, 1])\n",
|
381 |
+
"torch.Size([64])\n",
|
382 |
+
"torch.Size([64, 52])\n",
|
383 |
+
"torch.Size([64, 1])\n",
|
384 |
+
"torch.Size([64])\n",
|
385 |
+
"torch.Size([64, 55])\n",
|
386 |
+
"torch.Size([64, 1])\n",
|
387 |
+
"torch.Size([64])\n",
|
388 |
+
"torch.Size([64, 61])\n",
|
389 |
+
"torch.Size([64, 1])\n",
|
390 |
+
"torch.Size([64])\n",
|
391 |
+
"torch.Size([64, 73])\n",
|
392 |
+
"torch.Size([64, 1])\n",
|
393 |
+
"torch.Size([64])\n",
|
394 |
+
"torch.Size([64, 69])\n",
|
395 |
+
"torch.Size([64, 1])\n",
|
396 |
+
"torch.Size([64])\n",
|
397 |
+
"torch.Size([64, 54])\n",
|
398 |
+
"torch.Size([64, 1])\n",
|
399 |
+
"torch.Size([64])\n",
|
400 |
+
"torch.Size([64, 59])\n",
|
401 |
+
"torch.Size([64, 1])\n",
|
402 |
+
"torch.Size([64])\n",
|
403 |
+
"torch.Size([64, 74])\n",
|
404 |
+
"torch.Size([64, 1])\n",
|
405 |
+
"torch.Size([64])\n",
|
406 |
+
"torch.Size([64, 49])\n",
|
407 |
+
"torch.Size([64, 1])\n",
|
408 |
+
"torch.Size([64])\n",
|
409 |
+
"torch.Size([64, 52])\n",
|
410 |
+
"torch.Size([64, 1])\n",
|
411 |
+
"torch.Size([64])\n",
|
412 |
+
"torch.Size([64, 62])\n",
|
413 |
+
"torch.Size([64, 1])\n",
|
414 |
+
"torch.Size([64])\n",
|
415 |
+
"torch.Size([64, 58])\n",
|
416 |
+
"torch.Size([64, 1])\n",
|
417 |
+
"torch.Size([64])\n",
|
418 |
+
"torch.Size([64, 72])\n",
|
419 |
+
"torch.Size([64, 1])\n",
|
420 |
+
"torch.Size([64])\n",
|
421 |
+
"torch.Size([64, 69])\n",
|
422 |
+
"torch.Size([64, 1])\n",
|
423 |
+
"torch.Size([64])\n",
|
424 |
+
"torch.Size([64, 50])\n",
|
425 |
+
"torch.Size([64, 1])\n",
|
426 |
+
"torch.Size([64])\n",
|
427 |
+
"torch.Size([64, 74])\n",
|
428 |
+
"torch.Size([64, 1])\n",
|
429 |
+
"torch.Size([64])\n",
|
430 |
+
"torch.Size([64, 54])\n",
|
431 |
+
"torch.Size([64, 1])\n",
|
432 |
+
"torch.Size([64])\n",
|
433 |
+
"torch.Size([64, 59])\n",
|
434 |
+
"torch.Size([64, 1])\n",
|
435 |
+
"torch.Size([64])\n",
|
436 |
+
"torch.Size([64, 63])\n",
|
437 |
+
"torch.Size([64, 1])\n",
|
438 |
+
"torch.Size([64])\n",
|
439 |
+
"torch.Size([64, 79])\n",
|
440 |
+
"torch.Size([64, 1])\n",
|
441 |
+
"torch.Size([64])\n",
|
442 |
+
"torch.Size([64, 52])\n",
|
443 |
+
"torch.Size([64, 1])\n",
|
444 |
+
"torch.Size([64])\n",
|
445 |
+
"torch.Size([64, 60])\n",
|
446 |
+
"torch.Size([64, 1])\n",
|
447 |
+
"torch.Size([64])\n",
|
448 |
+
"torch.Size([64, 58])\n",
|
449 |
+
"torch.Size([64, 1])\n",
|
450 |
+
"torch.Size([64])\n",
|
451 |
+
"torch.Size([64, 64])\n",
|
452 |
+
"torch.Size([64, 1])\n",
|
453 |
+
"torch.Size([64])\n",
|
454 |
+
"torch.Size([64, 52])\n",
|
455 |
+
"torch.Size([64, 1])\n",
|
456 |
+
"torch.Size([64])\n",
|
457 |
+
"torch.Size([64, 61])\n",
|
458 |
+
"torch.Size([64, 1])\n",
|
459 |
+
"torch.Size([64])\n",
|
460 |
+
"torch.Size([64, 68])\n",
|
461 |
+
"torch.Size([64, 1])\n",
|
462 |
+
"torch.Size([64])\n",
|
463 |
+
"torch.Size([64, 70])\n",
|
464 |
+
"torch.Size([64, 1])\n",
|
465 |
+
"torch.Size([64])\n",
|
466 |
+
"torch.Size([64, 48])\n",
|
467 |
+
"torch.Size([64, 1])\n",
|
468 |
+
"torch.Size([64])\n",
|
469 |
+
"torch.Size([64, 69])\n",
|
470 |
+
"torch.Size([64, 1])\n",
|
471 |
+
"torch.Size([64])\n",
|
472 |
+
"torch.Size([64, 52])\n",
|
473 |
+
"torch.Size([64, 1])\n",
|
474 |
+
"torch.Size([64])\n",
|
475 |
+
"torch.Size([64, 75])\n",
|
476 |
+
"torch.Size([64, 1])\n",
|
477 |
+
"torch.Size([64])\n",
|
478 |
+
"torch.Size([64, 67])\n",
|
479 |
+
"torch.Size([64, 1])\n",
|
480 |
+
"torch.Size([64])\n",
|
481 |
+
"torch.Size([64, 57])\n",
|
482 |
+
"torch.Size([64, 1])\n",
|
483 |
+
"torch.Size([64])\n",
|
484 |
+
"torch.Size([64, 88])\n",
|
485 |
+
"torch.Size([64, 1])\n",
|
486 |
+
"torch.Size([64])\n",
|
487 |
+
"torch.Size([64, 64])\n",
|
488 |
+
"torch.Size([64, 1])\n",
|
489 |
+
"torch.Size([64])\n",
|
490 |
+
"torch.Size([64, 63])\n",
|
491 |
+
"torch.Size([64, 1])\n",
|
492 |
+
"torch.Size([64])\n",
|
493 |
+
"torch.Size([64, 64])\n",
|
494 |
+
"torch.Size([64, 1])\n",
|
495 |
+
"torch.Size([64])\n",
|
496 |
+
"torch.Size([64, 56])\n",
|
497 |
+
"torch.Size([64, 1])\n",
|
498 |
+
"torch.Size([64])\n",
|
499 |
+
"torch.Size([64, 52])\n",
|
500 |
+
"torch.Size([64, 1])\n",
|
501 |
+
"torch.Size([64])\n",
|
502 |
+
"torch.Size([64, 71])\n",
|
503 |
+
"torch.Size([64, 1])\n",
|
504 |
+
"torch.Size([64])\n",
|
505 |
+
"torch.Size([64, 57])\n",
|
506 |
+
"torch.Size([64, 1])\n",
|
507 |
+
"torch.Size([64])\n",
|
508 |
+
"torch.Size([64, 74])\n",
|
509 |
+
"torch.Size([64, 1])\n",
|
510 |
+
"torch.Size([64])\n",
|
511 |
+
"torch.Size([64, 62])\n",
|
512 |
+
"torch.Size([64, 1])\n",
|
513 |
+
"torch.Size([64])\n",
|
514 |
+
"torch.Size([64, 63])\n",
|
515 |
+
"torch.Size([64, 1])\n",
|
516 |
+
"torch.Size([64])\n",
|
517 |
+
"torch.Size([64, 76])\n",
|
518 |
+
"torch.Size([64, 1])\n",
|
519 |
+
"torch.Size([64])\n",
|
520 |
+
"torch.Size([64, 60])\n",
|
521 |
+
"torch.Size([64, 1])\n",
|
522 |
+
"torch.Size([64])\n",
|
523 |
+
"torch.Size([64, 62])\n",
|
524 |
+
"torch.Size([64, 1])\n",
|
525 |
+
"torch.Size([64])\n",
|
526 |
+
"torch.Size([64, 55])\n",
|
527 |
+
"torch.Size([64, 1])\n",
|
528 |
+
"torch.Size([64])\n",
|
529 |
+
"torch.Size([64, 65])\n",
|
530 |
+
"torch.Size([64, 1])\n",
|
531 |
+
"torch.Size([64])\n",
|
532 |
+
"torch.Size([64, 62])\n",
|
533 |
+
"torch.Size([64, 1])\n",
|
534 |
+
"torch.Size([64])\n",
|
535 |
+
"torch.Size([64, 57])\n",
|
536 |
+
"torch.Size([64, 1])\n",
|
537 |
+
"torch.Size([64])\n",
|
538 |
+
"torch.Size([64, 58])\n",
|
539 |
+
"torch.Size([64, 1])\n",
|
540 |
+
"torch.Size([64])\n",
|
541 |
+
"torch.Size([64, 65])\n",
|
542 |
+
"torch.Size([64, 1])\n",
|
543 |
+
"torch.Size([64])\n",
|
544 |
+
"torch.Size([64, 74])\n",
|
545 |
+
"torch.Size([64, 1])\n",
|
546 |
+
"torch.Size([64])\n",
|
547 |
+
"torch.Size([64, 56])\n",
|
548 |
+
"torch.Size([64, 1])\n",
|
549 |
+
"torch.Size([64])\n",
|
550 |
+
"torch.Size([64, 77])\n",
|
551 |
+
"torch.Size([64, 1])\n",
|
552 |
+
"torch.Size([64])\n",
|
553 |
+
"torch.Size([64, 50])\n",
|
554 |
+
"torch.Size([64, 1])\n",
|
555 |
+
"torch.Size([64])\n",
|
556 |
+
"torch.Size([64, 63])\n",
|
557 |
+
"torch.Size([64, 1])\n",
|
558 |
+
"torch.Size([64])\n",
|
559 |
+
"torch.Size([64, 72])\n",
|
560 |
+
"torch.Size([64, 1])\n",
|
561 |
+
"torch.Size([64])\n",
|
562 |
+
"torch.Size([64, 60])\n",
|
563 |
+
"torch.Size([64, 1])\n",
|
564 |
+
"torch.Size([64])\n",
|
565 |
+
"torch.Size([64, 59])\n",
|
566 |
+
"torch.Size([64, 1])\n",
|
567 |
+
"torch.Size([64])\n",
|
568 |
+
"torch.Size([64, 73])\n",
|
569 |
+
"torch.Size([64, 1])\n",
|
570 |
+
"torch.Size([64])\n",
|
571 |
+
"torch.Size([64, 54])\n",
|
572 |
+
"torch.Size([64, 1])\n",
|
573 |
+
"torch.Size([64])\n",
|
574 |
+
"torch.Size([64, 65])\n",
|
575 |
+
"torch.Size([64, 1])\n",
|
576 |
+
"torch.Size([64])\n",
|
577 |
+
"torch.Size([64, 51])\n",
|
578 |
+
"torch.Size([64, 1])\n",
|
579 |
+
"torch.Size([64])\n",
|
580 |
+
"torch.Size([64, 50])\n",
|
581 |
+
"torch.Size([64, 1])\n",
|
582 |
+
"torch.Size([64])\n",
|
583 |
+
"torch.Size([64, 54])\n",
|
584 |
+
"torch.Size([64, 1])\n",
|
585 |
+
"torch.Size([64])\n",
|
586 |
+
"torch.Size([64, 67])\n",
|
587 |
+
"torch.Size([64, 1])\n",
|
588 |
+
"torch.Size([64])\n",
|
589 |
+
"torch.Size([64, 60])\n",
|
590 |
+
"torch.Size([64, 1])\n",
|
591 |
+
"torch.Size([64])\n",
|
592 |
+
"torch.Size([64, 63])\n",
|
593 |
+
"torch.Size([64, 1])\n",
|
594 |
+
"torch.Size([64])\n",
|
595 |
+
"torch.Size([64, 77])\n",
|
596 |
+
"torch.Size([64, 1])\n",
|
597 |
+
"torch.Size([64])\n",
|
598 |
+
"torch.Size([64, 62])\n",
|
599 |
+
"torch.Size([64, 1])\n",
|
600 |
+
"torch.Size([64])\n",
|
601 |
+
"torch.Size([64, 70])\n",
|
602 |
+
"torch.Size([64, 1])\n",
|
603 |
+
"torch.Size([64])\n",
|
604 |
+
"torch.Size([64, 79])\n",
|
605 |
+
"torch.Size([64, 1])\n",
|
606 |
+
"torch.Size([64])\n",
|
607 |
+
"torch.Size([64, 67])\n",
|
608 |
+
"torch.Size([64, 1])\n",
|
609 |
+
"torch.Size([64])\n",
|
610 |
+
"torch.Size([64, 57])\n",
|
611 |
+
"torch.Size([64, 1])\n",
|
612 |
+
"torch.Size([64])\n",
|
613 |
+
"torch.Size([64, 54])\n",
|
614 |
+
"torch.Size([64, 1])\n",
|
615 |
+
"torch.Size([64])\n",
|
616 |
+
"torch.Size([64, 77])\n",
|
617 |
+
"torch.Size([64, 1])\n",
|
618 |
+
"torch.Size([64])\n",
|
619 |
+
"torch.Size([64, 87])\n",
|
620 |
+
"torch.Size([64, 1])\n",
|
621 |
+
"torch.Size([64])\n",
|
622 |
+
"torch.Size([64, 56])\n",
|
623 |
+
"torch.Size([64, 1])\n",
|
624 |
+
"torch.Size([64])\n",
|
625 |
+
"torch.Size([64, 62])\n",
|
626 |
+
"torch.Size([64, 1])\n",
|
627 |
+
"torch.Size([64])\n",
|
628 |
+
"torch.Size([64, 47])\n",
|
629 |
+
"torch.Size([64, 1])\n",
|
630 |
+
"torch.Size([64])\n",
|
631 |
+
"torch.Size([64, 58])\n",
|
632 |
+
"torch.Size([64, 1])\n",
|
633 |
+
"torch.Size([64])\n",
|
634 |
+
"torch.Size([64, 51])\n",
|
635 |
+
"torch.Size([64, 1])\n",
|
636 |
+
"torch.Size([64])\n",
|
637 |
+
"torch.Size([64, 60])\n",
|
638 |
+
"torch.Size([64, 1])\n",
|
639 |
+
"torch.Size([64])\n",
|
640 |
+
"torch.Size([64, 53])\n",
|
641 |
+
"torch.Size([64, 1])\n",
|
642 |
+
"torch.Size([64])\n",
|
643 |
+
"torch.Size([64, 54])\n",
|
644 |
+
"torch.Size([64, 1])\n",
|
645 |
+
"torch.Size([64])\n",
|
646 |
+
"torch.Size([64, 47])\n",
|
647 |
+
"torch.Size([64, 1])\n",
|
648 |
+
"torch.Size([64])\n",
|
649 |
+
"torch.Size([64, 55])\n",
|
650 |
+
"torch.Size([64, 1])\n",
|
651 |
+
"torch.Size([64])\n",
|
652 |
+
"torch.Size([64, 55])\n",
|
653 |
+
"torch.Size([64, 1])\n",
|
654 |
+
"torch.Size([64])\n",
|
655 |
+
"torch.Size([64, 63])\n",
|
656 |
+
"torch.Size([64, 1])\n",
|
657 |
+
"torch.Size([64])\n",
|
658 |
+
"torch.Size([64, 58])\n",
|
659 |
+
"torch.Size([64, 1])\n",
|
660 |
+
"torch.Size([64])\n",
|
661 |
+
"torch.Size([64, 60])\n",
|
662 |
+
"torch.Size([64, 1])\n",
|
663 |
+
"torch.Size([64])\n",
|
664 |
+
"torch.Size([64, 55])\n",
|
665 |
+
"torch.Size([64, 1])\n",
|
666 |
+
"torch.Size([64])\n",
|
667 |
+
"torch.Size([64, 79])\n",
|
668 |
+
"torch.Size([64, 1])\n",
|
669 |
+
"torch.Size([64])\n",
|
670 |
+
"torch.Size([64, 53])\n",
|
671 |
+
"torch.Size([64, 1])\n",
|
672 |
+
"torch.Size([64])\n",
|
673 |
+
"torch.Size([64, 68])\n",
|
674 |
+
"torch.Size([64, 1])\n",
|
675 |
+
"torch.Size([64])\n",
|
676 |
+
"torch.Size([64, 56])\n",
|
677 |
+
"torch.Size([64, 1])\n",
|
678 |
+
"torch.Size([64])\n",
|
679 |
+
"torch.Size([64, 53])\n",
|
680 |
+
"torch.Size([64, 1])\n",
|
681 |
+
"torch.Size([64])\n",
|
682 |
+
"torch.Size([64, 88])\n",
|
683 |
+
"torch.Size([64, 1])\n",
|
684 |
+
"torch.Size([64])\n",
|
685 |
+
"torch.Size([64, 50])\n",
|
686 |
+
"torch.Size([64, 1])\n",
|
687 |
+
"torch.Size([64])\n",
|
688 |
+
"torch.Size([64, 62])\n",
|
689 |
+
"torch.Size([64, 1])\n",
|
690 |
+
"torch.Size([64])\n",
|
691 |
+
"torch.Size([64, 67])\n",
|
692 |
+
"torch.Size([64, 1])\n",
|
693 |
+
"torch.Size([64])\n",
|
694 |
+
"torch.Size([64, 79])\n",
|
695 |
+
"torch.Size([64, 1])\n",
|
696 |
+
"torch.Size([64])\n",
|
697 |
+
"torch.Size([64, 80])\n",
|
698 |
+
"torch.Size([64, 1])\n",
|
699 |
+
"torch.Size([64])\n",
|
700 |
+
"torch.Size([64, 69])\n",
|
701 |
+
"torch.Size([64, 1])\n",
|
702 |
+
"torch.Size([64])\n",
|
703 |
+
"torch.Size([64, 67])\n",
|
704 |
+
"torch.Size([64, 1])\n",
|
705 |
+
"torch.Size([64])\n",
|
706 |
+
"torch.Size([64, 72])\n",
|
707 |
+
"torch.Size([64, 1])\n",
|
708 |
+
"torch.Size([64])\n",
|
709 |
+
"torch.Size([64, 60])\n",
|
710 |
+
"torch.Size([64, 1])\n",
|
711 |
+
"torch.Size([64])\n",
|
712 |
+
"torch.Size([64, 57])\n",
|
713 |
+
"torch.Size([64, 1])\n",
|
714 |
+
"torch.Size([64])\n",
|
715 |
+
"torch.Size([64, 55])\n",
|
716 |
+
"torch.Size([64, 1])\n",
|
717 |
+
"torch.Size([64])\n",
|
718 |
+
"torch.Size([64, 116])\n",
|
719 |
+
"torch.Size([64, 1])\n",
|
720 |
+
"torch.Size([64])\n",
|
721 |
+
"torch.Size([64, 54])\n",
|
722 |
+
"torch.Size([64, 1])\n",
|
723 |
+
"torch.Size([64])\n",
|
724 |
+
"torch.Size([64, 50])\n",
|
725 |
+
"torch.Size([64, 1])\n",
|
726 |
+
"torch.Size([64])\n",
|
727 |
+
"torch.Size([64, 64])\n",
|
728 |
+
"torch.Size([64, 1])\n",
|
729 |
+
"torch.Size([64])\n",
|
730 |
+
"torch.Size([64, 51])\n",
|
731 |
+
"torch.Size([64, 1])\n",
|
732 |
+
"torch.Size([64])\n",
|
733 |
+
"torch.Size([64, 70])\n",
|
734 |
+
"torch.Size([64, 1])\n",
|
735 |
+
"torch.Size([64])\n",
|
736 |
+
"torch.Size([64, 72])\n",
|
737 |
+
"torch.Size([64, 1])\n",
|
738 |
+
"torch.Size([64])\n",
|
739 |
+
"torch.Size([64, 59])\n",
|
740 |
+
"torch.Size([64, 1])\n",
|
741 |
+
"torch.Size([64])\n",
|
742 |
+
"torch.Size([64, 61])\n",
|
743 |
+
"torch.Size([64, 1])\n",
|
744 |
+
"torch.Size([64])\n",
|
745 |
+
"torch.Size([64, 54])\n",
|
746 |
+
"torch.Size([64, 1])\n",
|
747 |
+
"torch.Size([64])\n",
|
748 |
+
"torch.Size([64, 54])\n",
|
749 |
+
"torch.Size([64, 1])\n",
|
750 |
+
"torch.Size([64])\n",
|
751 |
+
"torch.Size([64, 63])\n",
|
752 |
+
"torch.Size([64, 1])\n",
|
753 |
+
"torch.Size([64])\n",
|
754 |
+
"torch.Size([64, 57])\n",
|
755 |
+
"torch.Size([64, 1])\n",
|
756 |
+
"torch.Size([64])\n",
|
757 |
+
"torch.Size([64, 60])\n",
|
758 |
+
"torch.Size([64, 1])\n",
|
759 |
+
"torch.Size([64])\n",
|
760 |
+
"torch.Size([64, 77])\n",
|
761 |
+
"torch.Size([64, 1])\n",
|
762 |
+
"torch.Size([64])\n",
|
763 |
+
"torch.Size([64, 67])\n",
|
764 |
+
"torch.Size([64, 1])\n",
|
765 |
+
"torch.Size([64])\n",
|
766 |
+
"torch.Size([64, 54])\n",
|
767 |
+
"torch.Size([64, 1])\n",
|
768 |
+
"torch.Size([64])\n",
|
769 |
+
"torch.Size([64, 87])\n",
|
770 |
+
"torch.Size([64, 1])\n",
|
771 |
+
"torch.Size([64])\n",
|
772 |
+
"torch.Size([64, 58])\n",
|
773 |
+
"torch.Size([64, 1])\n",
|
774 |
+
"torch.Size([64])\n",
|
775 |
+
"torch.Size([64, 59])\n",
|
776 |
+
"torch.Size([64, 1])\n",
|
777 |
+
"torch.Size([64])\n",
|
778 |
+
"torch.Size([64, 67])\n",
|
779 |
+
"torch.Size([64, 1])\n",
|
780 |
+
"torch.Size([64])\n",
|
781 |
+
"torch.Size([64, 64])\n",
|
782 |
+
"torch.Size([64, 1])\n",
|
783 |
+
"torch.Size([64])\n",
|
784 |
+
"torch.Size([64, 62])\n",
|
785 |
+
"torch.Size([64, 1])\n",
|
786 |
+
"torch.Size([64])\n",
|
787 |
+
"torch.Size([64, 55])\n",
|
788 |
+
"torch.Size([64, 1])\n",
|
789 |
+
"torch.Size([64])\n",
|
790 |
+
"torch.Size([64, 65])\n",
|
791 |
+
"torch.Size([64, 1])\n",
|
792 |
+
"torch.Size([64])\n",
|
793 |
+
"torch.Size([64, 70])\n",
|
794 |
+
"torch.Size([64, 1])\n",
|
795 |
+
"torch.Size([64])\n",
|
796 |
+
"torch.Size([64, 63])\n",
|
797 |
+
"torch.Size([64, 1])\n",
|
798 |
+
"torch.Size([64])\n",
|
799 |
+
"torch.Size([64, 59])\n",
|
800 |
+
"torch.Size([64, 1])\n",
|
801 |
+
"torch.Size([64])\n",
|
802 |
+
"torch.Size([64, 59])\n",
|
803 |
+
"torch.Size([64, 1])\n",
|
804 |
+
"torch.Size([64])\n",
|
805 |
+
"torch.Size([64, 59])\n",
|
806 |
+
"torch.Size([64, 1])\n",
|
807 |
+
"torch.Size([64])\n",
|
808 |
+
"torch.Size([64, 65])\n",
|
809 |
+
"torch.Size([64, 1])\n",
|
810 |
+
"torch.Size([64])\n",
|
811 |
+
"torch.Size([64, 71])\n",
|
812 |
+
"torch.Size([64, 1])\n",
|
813 |
+
"torch.Size([64])\n",
|
814 |
+
"torch.Size([64, 61])\n",
|
815 |
+
"torch.Size([64, 1])\n",
|
816 |
+
"torch.Size([64])\n",
|
817 |
+
"torch.Size([64, 56])\n",
|
818 |
+
"torch.Size([64, 1])\n",
|
819 |
+
"torch.Size([64])\n",
|
820 |
+
"torch.Size([64, 50])\n",
|
821 |
+
"torch.Size([64, 1])\n",
|
822 |
+
"torch.Size([64])\n",
|
823 |
+
"torch.Size([64, 61])\n",
|
824 |
+
"torch.Size([64, 1])\n",
|
825 |
+
"torch.Size([64])\n",
|
826 |
+
"torch.Size([64, 74])\n",
|
827 |
+
"torch.Size([64, 1])\n",
|
828 |
+
"torch.Size([64])\n",
|
829 |
+
"torch.Size([64, 59])\n",
|
830 |
+
"torch.Size([64, 1])\n",
|
831 |
+
"torch.Size([64])\n",
|
832 |
+
"torch.Size([64, 57])\n",
|
833 |
+
"torch.Size([64, 1])\n",
|
834 |
+
"torch.Size([64])\n",
|
835 |
+
"torch.Size([64, 52])\n",
|
836 |
+
"torch.Size([64, 1])\n",
|
837 |
+
"torch.Size([64])\n",
|
838 |
+
"torch.Size([64, 49])\n",
|
839 |
+
"torch.Size([64, 1])\n",
|
840 |
+
"torch.Size([64])\n",
|
841 |
+
"torch.Size([64, 57])\n",
|
842 |
+
"torch.Size([64, 1])\n",
|
843 |
+
"torch.Size([64])\n",
|
844 |
+
"torch.Size([64, 61])\n",
|
845 |
+
"torch.Size([64, 1])\n",
|
846 |
+
"torch.Size([64])\n",
|
847 |
+
"torch.Size([64, 52])\n",
|
848 |
+
"torch.Size([64, 1])\n",
|
849 |
+
"torch.Size([64])\n",
|
850 |
+
"torch.Size([64, 58])\n",
|
851 |
+
"torch.Size([64, 1])\n",
|
852 |
+
"torch.Size([64])\n",
|
853 |
+
"torch.Size([64, 56])\n",
|
854 |
+
"torch.Size([64, 1])\n",
|
855 |
+
"torch.Size([64])\n",
|
856 |
+
"torch.Size([64, 60])\n",
|
857 |
+
"torch.Size([64, 1])\n",
|
858 |
+
"torch.Size([64])\n",
|
859 |
+
"torch.Size([64, 54])\n",
|
860 |
+
"torch.Size([64, 1])\n",
|
861 |
+
"torch.Size([64])\n",
|
862 |
+
"torch.Size([64, 63])\n",
|
863 |
+
"torch.Size([64, 1])\n",
|
864 |
+
"torch.Size([64])\n",
|
865 |
+
"torch.Size([64, 56])\n",
|
866 |
+
"torch.Size([64, 1])\n",
|
867 |
+
"torch.Size([64])\n",
|
868 |
+
"torch.Size([64, 57])\n",
|
869 |
+
"torch.Size([64, 1])\n",
|
870 |
+
"torch.Size([64])\n",
|
871 |
+
"torch.Size([64, 61])\n",
|
872 |
+
"torch.Size([64, 1])\n",
|
873 |
+
"torch.Size([64])\n",
|
874 |
+
"torch.Size([64, 73])\n",
|
875 |
+
"torch.Size([64, 1])\n",
|
876 |
+
"torch.Size([64])\n",
|
877 |
+
"torch.Size([64, 65])\n",
|
878 |
+
"torch.Size([64, 1])\n",
|
879 |
+
"torch.Size([64])\n",
|
880 |
+
"torch.Size([64, 51])\n",
|
881 |
+
"torch.Size([64, 1])\n",
|
882 |
+
"torch.Size([64])\n",
|
883 |
+
"torch.Size([64, 69])\n",
|
884 |
+
"torch.Size([64, 1])\n",
|
885 |
+
"torch.Size([64])\n",
|
886 |
+
"torch.Size([64, 79])\n",
|
887 |
+
"torch.Size([64, 1])\n",
|
888 |
+
"torch.Size([64])\n",
|
889 |
+
"torch.Size([64, 80])\n",
|
890 |
+
"torch.Size([64, 1])\n",
|
891 |
+
"torch.Size([64])\n",
|
892 |
+
"torch.Size([64, 79])\n",
|
893 |
+
"torch.Size([64, 1])\n",
|
894 |
+
"torch.Size([64])\n",
|
895 |
+
"torch.Size([64, 63])\n",
|
896 |
+
"torch.Size([64, 1])\n",
|
897 |
+
"torch.Size([64])\n",
|
898 |
+
"torch.Size([64, 59])\n",
|
899 |
+
"torch.Size([64, 1])\n",
|
900 |
+
"torch.Size([64])\n",
|
901 |
+
"torch.Size([64, 51])\n",
|
902 |
+
"torch.Size([64, 1])\n",
|
903 |
+
"torch.Size([64])\n",
|
904 |
+
"torch.Size([64, 55])\n",
|
905 |
+
"torch.Size([64, 1])\n",
|
906 |
+
"torch.Size([64])\n",
|
907 |
+
"torch.Size([64, 55])\n",
|
908 |
+
"torch.Size([64, 1])\n",
|
909 |
+
"torch.Size([64])\n",
|
910 |
+
"torch.Size([64, 50])\n",
|
911 |
+
"torch.Size([64, 1])\n",
|
912 |
+
"torch.Size([64])\n",
|
913 |
+
"torch.Size([64, 75])\n",
|
914 |
+
"torch.Size([64, 1])\n",
|
915 |
+
"torch.Size([64])\n",
|
916 |
+
"torch.Size([64, 58])\n",
|
917 |
+
"torch.Size([64, 1])\n",
|
918 |
+
"torch.Size([64])\n",
|
919 |
+
"torch.Size([64, 54])\n",
|
920 |
+
"torch.Size([64, 1])\n",
|
921 |
+
"torch.Size([64])\n",
|
922 |
+
"torch.Size([64, 54])\n",
|
923 |
+
"torch.Size([64, 1])\n",
|
924 |
+
"torch.Size([64])\n",
|
925 |
+
"torch.Size([64, 57])\n",
|
926 |
+
"torch.Size([64, 1])\n",
|
927 |
+
"torch.Size([64])\n",
|
928 |
+
"torch.Size([64, 77])\n",
|
929 |
+
"torch.Size([64, 1])\n",
|
930 |
+
"torch.Size([64])\n",
|
931 |
+
"torch.Size([64, 55])\n",
|
932 |
+
"torch.Size([64, 1])\n",
|
933 |
+
"torch.Size([64])\n",
|
934 |
+
"torch.Size([64, 58])\n",
|
935 |
+
"torch.Size([64, 1])\n",
|
936 |
+
"torch.Size([64])\n",
|
937 |
+
"torch.Size([64, 56])\n",
|
938 |
+
"torch.Size([64, 1])\n",
|
939 |
+
"torch.Size([64])\n",
|
940 |
+
"torch.Size([64, 70])\n",
|
941 |
+
"torch.Size([64, 1])\n",
|
942 |
+
"torch.Size([64])\n",
|
943 |
+
"torch.Size([64, 56])\n",
|
944 |
+
"torch.Size([64, 1])\n",
|
945 |
+
"torch.Size([64])\n",
|
946 |
+
"torch.Size([64, 55])\n",
|
947 |
+
"torch.Size([64, 1])\n",
|
948 |
+
"torch.Size([64])\n",
|
949 |
+
"torch.Size([64, 51])\n",
|
950 |
+
"torch.Size([64, 1])\n",
|
951 |
+
"torch.Size([64])\n",
|
952 |
+
"torch.Size([64, 69])\n",
|
953 |
+
"torch.Size([64, 1])\n",
|
954 |
+
"torch.Size([64])\n",
|
955 |
+
"torch.Size([64, 64])\n",
|
956 |
+
"torch.Size([64, 1])\n",
|
957 |
+
"torch.Size([64])\n",
|
958 |
+
"torch.Size([64, 64])\n",
|
959 |
+
"torch.Size([64, 1])\n",
|
960 |
+
"torch.Size([64])\n",
|
961 |
+
"torch.Size([64, 71])\n",
|
962 |
+
"torch.Size([64, 1])\n",
|
963 |
+
"torch.Size([64])\n",
|
964 |
+
"torch.Size([64, 67])\n",
|
965 |
+
"torch.Size([64, 1])\n",
|
966 |
+
"torch.Size([64])\n",
|
967 |
+
"torch.Size([64, 54])\n",
|
968 |
+
"torch.Size([64, 1])\n",
|
969 |
+
"torch.Size([64])\n",
|
970 |
+
"torch.Size([64, 63])\n",
|
971 |
+
"torch.Size([64, 1])\n",
|
972 |
+
"torch.Size([64])\n",
|
973 |
+
"torch.Size([64, 67])\n",
|
974 |
+
"torch.Size([64, 1])\n",
|
975 |
+
"torch.Size([64])\n",
|
976 |
+
"torch.Size([64, 54])\n",
|
977 |
+
"torch.Size([64, 1])\n",
|
978 |
+
"torch.Size([64])\n",
|
979 |
+
"torch.Size([64, 67])\n",
|
980 |
+
"torch.Size([64, 1])\n",
|
981 |
+
"torch.Size([64])\n",
|
982 |
+
"torch.Size([64, 50])\n",
|
983 |
+
"torch.Size([64, 1])\n",
|
984 |
+
"torch.Size([64])\n",
|
985 |
+
"torch.Size([64, 62])\n",
|
986 |
+
"torch.Size([64, 1])\n",
|
987 |
+
"torch.Size([64])\n",
|
988 |
+
"torch.Size([64, 57])\n",
|
989 |
+
"torch.Size([64, 1])\n",
|
990 |
+
"torch.Size([64])\n",
|
991 |
+
"torch.Size([64, 57])\n",
|
992 |
+
"torch.Size([64, 1])\n",
|
993 |
+
"torch.Size([64])\n",
|
994 |
+
"torch.Size([64, 50])\n",
|
995 |
+
"torch.Size([64, 1])\n",
|
996 |
+
"torch.Size([64])\n",
|
997 |
+
"torch.Size([64, 59])\n",
|
998 |
+
"torch.Size([64, 1])\n",
|
999 |
+
"torch.Size([64])\n",
|
1000 |
+
"torch.Size([64, 58])\n",
|
1001 |
+
"torch.Size([64, 1])\n",
|
1002 |
+
"torch.Size([64])\n",
|
1003 |
+
"torch.Size([64, 63])\n",
|
1004 |
+
"torch.Size([64, 1])\n",
|
1005 |
+
"torch.Size([64])\n",
|
1006 |
+
"torch.Size([64, 59])\n",
|
1007 |
+
"torch.Size([64, 1])\n",
|
1008 |
+
"torch.Size([64])\n",
|
1009 |
+
"torch.Size([64, 49])\n",
|
1010 |
+
"torch.Size([64, 1])\n",
|
1011 |
+
"torch.Size([64])\n",
|
1012 |
+
"torch.Size([64, 53])\n",
|
1013 |
+
"torch.Size([64, 1])\n",
|
1014 |
+
"torch.Size([64])\n",
|
1015 |
+
"torch.Size([64, 50])\n",
|
1016 |
+
"torch.Size([64, 1])\n",
|
1017 |
+
"torch.Size([64])\n",
|
1018 |
+
"torch.Size([64, 49])\n",
|
1019 |
+
"torch.Size([64, 1])\n",
|
1020 |
+
"torch.Size([64])\n",
|
1021 |
+
"torch.Size([64, 72])\n",
|
1022 |
+
"torch.Size([64, 1])\n",
|
1023 |
+
"torch.Size([64])\n",
|
1024 |
+
"torch.Size([64, 74])\n",
|
1025 |
+
"torch.Size([64, 1])\n",
|
1026 |
+
"torch.Size([64])\n",
|
1027 |
+
"torch.Size([64, 67])\n",
|
1028 |
+
"torch.Size([64, 1])\n",
|
1029 |
+
"torch.Size([64])\n",
|
1030 |
+
"torch.Size([64, 50])\n",
|
1031 |
+
"torch.Size([64, 1])\n",
|
1032 |
+
"torch.Size([64])\n",
|
1033 |
+
"torch.Size([64, 54])\n",
|
1034 |
+
"torch.Size([64, 1])\n",
|
1035 |
+
"torch.Size([64])\n",
|
1036 |
+
"torch.Size([64, 52])\n",
|
1037 |
+
"torch.Size([64, 1])\n",
|
1038 |
+
"torch.Size([64])\n",
|
1039 |
+
"torch.Size([64, 74])\n",
|
1040 |
+
"torch.Size([64, 1])\n",
|
1041 |
+
"torch.Size([64])\n",
|
1042 |
+
"torch.Size([64, 63])\n",
|
1043 |
+
"torch.Size([64, 1])\n",
|
1044 |
+
"torch.Size([64])\n",
|
1045 |
+
"torch.Size([64, 51])\n",
|
1046 |
+
"torch.Size([64, 1])\n",
|
1047 |
+
"torch.Size([64])\n",
|
1048 |
+
"torch.Size([64, 63])\n",
|
1049 |
+
"torch.Size([64, 1])\n",
|
1050 |
+
"torch.Size([64])\n",
|
1051 |
+
"torch.Size([64, 56])\n",
|
1052 |
+
"torch.Size([64, 1])\n",
|
1053 |
+
"torch.Size([64])\n",
|
1054 |
+
"torch.Size([64, 65])\n",
|
1055 |
+
"torch.Size([64, 1])\n",
|
1056 |
+
"torch.Size([64])\n",
|
1057 |
+
"torch.Size([64, 58])\n",
|
1058 |
+
"torch.Size([64, 1])\n",
|
1059 |
+
"torch.Size([64])\n",
|
1060 |
+
"torch.Size([64, 54])\n",
|
1061 |
+
"torch.Size([64, 1])\n",
|
1062 |
+
"torch.Size([64])\n",
|
1063 |
+
"torch.Size([64, 67])\n",
|
1064 |
+
"torch.Size([64, 1])\n",
|
1065 |
+
"torch.Size([64])\n",
|
1066 |
+
"torch.Size([64, 56])\n",
|
1067 |
+
"torch.Size([64, 1])\n",
|
1068 |
+
"torch.Size([64])\n",
|
1069 |
+
"torch.Size([64, 65])\n",
|
1070 |
+
"torch.Size([64, 1])\n",
|
1071 |
+
"torch.Size([64])\n",
|
1072 |
+
"torch.Size([64, 55])\n",
|
1073 |
+
"torch.Size([64, 1])\n",
|
1074 |
+
"torch.Size([64])\n",
|
1075 |
+
"torch.Size([64, 55])\n",
|
1076 |
+
"torch.Size([64, 1])\n",
|
1077 |
+
"torch.Size([64])\n",
|
1078 |
+
"torch.Size([64, 73])\n",
|
1079 |
+
"torch.Size([64, 1])\n",
|
1080 |
+
"torch.Size([64])\n",
|
1081 |
+
"torch.Size([64, 75])\n",
|
1082 |
+
"torch.Size([64, 1])\n",
|
1083 |
+
"torch.Size([64])\n",
|
1084 |
+
"torch.Size([64, 59])\n",
|
1085 |
+
"torch.Size([64, 1])\n",
|
1086 |
+
"torch.Size([64])\n",
|
1087 |
+
"torch.Size([64, 58])\n",
|
1088 |
+
"torch.Size([64, 1])\n",
|
1089 |
+
"torch.Size([64])\n",
|
1090 |
+
"torch.Size([41, 48])\n",
|
1091 |
+
"torch.Size([41, 1])\n",
|
1092 |
+
"torch.Size([41])\n",
|
1093 |
+
"torch.Size([512, 75])\n",
|
1094 |
+
"torch.Size([512, 1])\n",
|
1095 |
+
"torch.Size([512])\n",
|
1096 |
+
"torch.Size([64, 73])\n",
|
1097 |
+
"torch.Size([64, 1])\n",
|
1098 |
+
"torch.Size([64])\n",
|
1099 |
+
"torch.Size([64, 60])\n",
|
1100 |
+
"torch.Size([64, 1])\n",
|
1101 |
+
"torch.Size([64])\n",
|
1102 |
+
"torch.Size([64, 71])\n",
|
1103 |
+
"torch.Size([64, 1])\n",
|
1104 |
+
"torch.Size([64])\n",
|
1105 |
+
"torch.Size([64, 55])\n",
|
1106 |
+
"torch.Size([64, 1])\n",
|
1107 |
+
"torch.Size([64])\n",
|
1108 |
+
"torch.Size([64, 59])\n",
|
1109 |
+
"torch.Size([64, 1])\n",
|
1110 |
+
"torch.Size([64])\n",
|
1111 |
+
"torch.Size([64, 74])\n",
|
1112 |
+
"torch.Size([64, 1])\n",
|
1113 |
+
"torch.Size([64])\n",
|
1114 |
+
"torch.Size([64, 54])\n",
|
1115 |
+
"torch.Size([64, 1])\n",
|
1116 |
+
"torch.Size([64])\n",
|
1117 |
+
"torch.Size([64, 51])\n",
|
1118 |
+
"torch.Size([64, 1])\n",
|
1119 |
+
"torch.Size([64])\n",
|
1120 |
+
"torch.Size([64, 73])\n",
|
1121 |
+
"torch.Size([64, 1])\n",
|
1122 |
+
"torch.Size([64])\n",
|
1123 |
+
"torch.Size([64, 76])\n",
|
1124 |
+
"torch.Size([64, 1])\n",
|
1125 |
+
"torch.Size([64])\n",
|
1126 |
+
"torch.Size([64, 53])\n",
|
1127 |
+
"torch.Size([64, 1])\n",
|
1128 |
+
"torch.Size([64])\n",
|
1129 |
+
"torch.Size([64, 51])\n",
|
1130 |
+
"torch.Size([64, 1])\n",
|
1131 |
+
"torch.Size([64])\n",
|
1132 |
+
"torch.Size([64, 60])\n",
|
1133 |
+
"torch.Size([64, 1])\n",
|
1134 |
+
"torch.Size([64])\n",
|
1135 |
+
"torch.Size([64, 58])\n",
|
1136 |
+
"torch.Size([64, 1])\n",
|
1137 |
+
"torch.Size([64])\n",
|
1138 |
+
"torch.Size([64, 74])\n",
|
1139 |
+
"torch.Size([64, 1])\n",
|
1140 |
+
"torch.Size([64])\n",
|
1141 |
+
"torch.Size([64, 69])\n",
|
1142 |
+
"torch.Size([64, 1])\n",
|
1143 |
+
"torch.Size([64])\n",
|
1144 |
+
"torch.Size([64, 52])\n",
|
1145 |
+
"torch.Size([64, 1])\n",
|
1146 |
+
"torch.Size([64])\n",
|
1147 |
+
"torch.Size([64, 72])\n",
|
1148 |
+
"torch.Size([64, 1])\n",
|
1149 |
+
"torch.Size([64])\n",
|
1150 |
+
"torch.Size([64, 62])\n",
|
1151 |
+
"torch.Size([64, 1])\n",
|
1152 |
+
"torch.Size([64])\n",
|
1153 |
+
"torch.Size([64, 54])\n",
|
1154 |
+
"torch.Size([64, 1])\n",
|
1155 |
+
"torch.Size([64])\n",
|
1156 |
+
"torch.Size([64, 52])\n",
|
1157 |
+
"torch.Size([64, 1])\n",
|
1158 |
+
"torch.Size([64])\n",
|
1159 |
+
"torch.Size([64, 67])\n",
|
1160 |
+
"torch.Size([64, 1])\n",
|
1161 |
+
"torch.Size([64])\n",
|
1162 |
+
"torch.Size([64, 54])\n",
|
1163 |
+
"torch.Size([64, 1])\n",
|
1164 |
+
"torch.Size([64])\n",
|
1165 |
+
"torch.Size([64, 53])\n",
|
1166 |
+
"torch.Size([64, 1])\n",
|
1167 |
+
"torch.Size([64])\n",
|
1168 |
+
"torch.Size([64, 58])\n",
|
1169 |
+
"torch.Size([64, 1])\n",
|
1170 |
+
"torch.Size([64])\n",
|
1171 |
+
"torch.Size([64, 58])\n",
|
1172 |
+
"torch.Size([64, 1])\n",
|
1173 |
+
"torch.Size([64])\n",
|
1174 |
+
"torch.Size([64, 56])\n",
|
1175 |
+
"torch.Size([64, 1])\n",
|
1176 |
+
"torch.Size([64])\n",
|
1177 |
+
"torch.Size([64, 67])\n",
|
1178 |
+
"torch.Size([64, 1])\n",
|
1179 |
+
"torch.Size([64])\n",
|
1180 |
+
"torch.Size([64, 55])\n",
|
1181 |
+
"torch.Size([64, 1])\n",
|
1182 |
+
"torch.Size([64])\n",
|
1183 |
+
"torch.Size([64, 71])\n",
|
1184 |
+
"torch.Size([64, 1])\n",
|
1185 |
+
"torch.Size([64])\n",
|
1186 |
+
"torch.Size([64, 71])\n",
|
1187 |
+
"torch.Size([64, 1])\n",
|
1188 |
+
"torch.Size([64])\n",
|
1189 |
+
"torch.Size([64, 68])\n",
|
1190 |
+
"torch.Size([64, 1])\n",
|
1191 |
+
"torch.Size([64])\n",
|
1192 |
+
"torch.Size([64, 63])\n",
|
1193 |
+
"torch.Size([64, 1])\n",
|
1194 |
+
"torch.Size([64])\n",
|
1195 |
+
"torch.Size([64, 49])\n",
|
1196 |
+
"torch.Size([64, 1])\n",
|
1197 |
+
"torch.Size([64])\n",
|
1198 |
+
"torch.Size([64, 52])\n",
|
1199 |
+
"torch.Size([64, 1])\n",
|
1200 |
+
"torch.Size([64])\n",
|
1201 |
+
"torch.Size([64, 54])\n",
|
1202 |
+
"torch.Size([64, 1])\n",
|
1203 |
+
"torch.Size([64])\n",
|
1204 |
+
"torch.Size([64, 72])\n",
|
1205 |
+
"torch.Size([64, 1])\n",
|
1206 |
+
"torch.Size([64])\n",
|
1207 |
+
"torch.Size([64, 77])\n",
|
1208 |
+
"torch.Size([64, 1])\n",
|
1209 |
+
"torch.Size([64])\n",
|
1210 |
+
"torch.Size([64, 59])\n",
|
1211 |
+
"torch.Size([64, 1])\n",
|
1212 |
+
"torch.Size([64])\n",
|
1213 |
+
"torch.Size([64, 58])\n",
|
1214 |
+
"torch.Size([64, 1])\n",
|
1215 |
+
"torch.Size([64])\n",
|
1216 |
+
"torch.Size([64, 72])\n",
|
1217 |
+
"torch.Size([64, 1])\n",
|
1218 |
+
"torch.Size([64])\n",
|
1219 |
+
"torch.Size([64, 65])\n",
|
1220 |
+
"torch.Size([64, 1])\n",
|
1221 |
+
"torch.Size([64])\n",
|
1222 |
+
"torch.Size([64, 79])\n",
|
1223 |
+
"torch.Size([64, 1])\n",
|
1224 |
+
"torch.Size([64])\n",
|
1225 |
+
"torch.Size([64, 65])\n",
|
1226 |
+
"torch.Size([64, 1])\n",
|
1227 |
+
"torch.Size([64])\n",
|
1228 |
+
"torch.Size([64, 59])\n",
|
1229 |
+
"torch.Size([64, 1])\n",
|
1230 |
+
"torch.Size([64])\n",
|
1231 |
+
"torch.Size([64, 79])\n",
|
1232 |
+
"torch.Size([64, 1])\n",
|
1233 |
+
"torch.Size([64])\n",
|
1234 |
+
"torch.Size([64, 54])\n",
|
1235 |
+
"torch.Size([64, 1])\n",
|
1236 |
+
"torch.Size([64])\n",
|
1237 |
+
"torch.Size([64, 50])\n",
|
1238 |
+
"torch.Size([64, 1])\n",
|
1239 |
+
"torch.Size([64])\n",
|
1240 |
+
"torch.Size([64, 55])\n",
|
1241 |
+
"torch.Size([64, 1])\n",
|
1242 |
+
"torch.Size([64])\n",
|
1243 |
+
"torch.Size([64, 65])\n",
|
1244 |
+
"torch.Size([64, 1])\n",
|
1245 |
+
"torch.Size([64])\n",
|
1246 |
+
"torch.Size([64, 60])\n",
|
1247 |
+
"torch.Size([64, 1])\n",
|
1248 |
+
"torch.Size([64])\n",
|
1249 |
+
"torch.Size([64, 59])\n",
|
1250 |
+
"torch.Size([64, 1])\n",
|
1251 |
+
"torch.Size([64])\n",
|
1252 |
+
"torch.Size([64, 60])\n",
|
1253 |
+
"torch.Size([64, 1])\n",
|
1254 |
+
"torch.Size([64])\n",
|
1255 |
+
"torch.Size([64, 59])\n",
|
1256 |
+
"torch.Size([64, 1])\n",
|
1257 |
+
"torch.Size([64])\n",
|
1258 |
+
"torch.Size([64, 54])\n",
|
1259 |
+
"torch.Size([64, 1])\n",
|
1260 |
+
"torch.Size([64])\n",
|
1261 |
+
"torch.Size([64, 50])\n",
|
1262 |
+
"torch.Size([64, 1])\n",
|
1263 |
+
"torch.Size([64])\n",
|
1264 |
+
"torch.Size([64, 69])\n",
|
1265 |
+
"torch.Size([64, 1])\n",
|
1266 |
+
"torch.Size([64])\n",
|
1267 |
+
"torch.Size([64, 55])\n",
|
1268 |
+
"torch.Size([64, 1])\n",
|
1269 |
+
"torch.Size([64])\n",
|
1270 |
+
"torch.Size([64, 57])\n",
|
1271 |
+
"torch.Size([64, 1])\n",
|
1272 |
+
"torch.Size([64])\n",
|
1273 |
+
"torch.Size([64, 63])\n",
|
1274 |
+
"torch.Size([64, 1])\n",
|
1275 |
+
"torch.Size([64])\n",
|
1276 |
+
"torch.Size([64, 72])\n",
|
1277 |
+
"torch.Size([64, 1])\n",
|
1278 |
+
"torch.Size([64])\n",
|
1279 |
+
"torch.Size([64, 63])\n",
|
1280 |
+
"torch.Size([64, 1])\n",
|
1281 |
+
"torch.Size([64])\n",
|
1282 |
+
"torch.Size([64, 65])\n",
|
1283 |
+
"torch.Size([64, 1])\n",
|
1284 |
+
"torch.Size([64])\n",
|
1285 |
+
"torch.Size([64, 77])\n",
|
1286 |
+
"torch.Size([64, 1])\n",
|
1287 |
+
"torch.Size([64])\n",
|
1288 |
+
"torch.Size([64, 57])\n",
|
1289 |
+
"torch.Size([64, 1])\n",
|
1290 |
+
"torch.Size([64])\n",
|
1291 |
+
"torch.Size([64, 56])\n",
|
1292 |
+
"torch.Size([64, 1])\n",
|
1293 |
+
"torch.Size([64])\n",
|
1294 |
+
"torch.Size([64, 52])\n",
|
1295 |
+
"torch.Size([64, 1])\n",
|
1296 |
+
"torch.Size([64])\n",
|
1297 |
+
"torch.Size([64, 54])\n",
|
1298 |
+
"torch.Size([64, 1])\n",
|
1299 |
+
"torch.Size([64])\n",
|
1300 |
+
"torch.Size([64, 72])\n",
|
1301 |
+
"torch.Size([64, 1])\n",
|
1302 |
+
"torch.Size([64])\n",
|
1303 |
+
"torch.Size([64, 70])\n",
|
1304 |
+
"torch.Size([64, 1])\n",
|
1305 |
+
"torch.Size([64])\n",
|
1306 |
+
"torch.Size([64, 60])\n",
|
1307 |
+
"torch.Size([64, 1])\n",
|
1308 |
+
"torch.Size([64])\n",
|
1309 |
+
"torch.Size([64, 67])\n",
|
1310 |
+
"torch.Size([64, 1])\n",
|
1311 |
+
"torch.Size([64])\n",
|
1312 |
+
"torch.Size([64, 64])\n",
|
1313 |
+
"torch.Size([64, 1])\n",
|
1314 |
+
"torch.Size([64])\n",
|
1315 |
+
"torch.Size([64, 56])\n",
|
1316 |
+
"torch.Size([64, 1])\n",
|
1317 |
+
"torch.Size([64])\n",
|
1318 |
+
"torch.Size([64, 55])\n",
|
1319 |
+
"torch.Size([64, 1])\n",
|
1320 |
+
"torch.Size([64])\n",
|
1321 |
+
"torch.Size([64, 64])\n",
|
1322 |
+
"torch.Size([64, 1])\n",
|
1323 |
+
"torch.Size([64])\n",
|
1324 |
+
"torch.Size([64, 88])\n",
|
1325 |
+
"torch.Size([64, 1])\n",
|
1326 |
+
"torch.Size([64])\n",
|
1327 |
+
"torch.Size([64, 80])\n",
|
1328 |
+
"torch.Size([64, 1])\n",
|
1329 |
+
"torch.Size([64])\n",
|
1330 |
+
"torch.Size([64, 62])\n",
|
1331 |
+
"torch.Size([64, 1])\n",
|
1332 |
+
"torch.Size([64])\n",
|
1333 |
+
"torch.Size([64, 48])\n",
|
1334 |
+
"torch.Size([64, 1])\n",
|
1335 |
+
"torch.Size([64])\n",
|
1336 |
+
"torch.Size([64, 60])\n",
|
1337 |
+
"torch.Size([64, 1])\n",
|
1338 |
+
"torch.Size([64])\n",
|
1339 |
+
"torch.Size([64, 79])\n",
|
1340 |
+
"torch.Size([64, 1])\n",
|
1341 |
+
"torch.Size([64])\n",
|
1342 |
+
"torch.Size([64, 56])\n",
|
1343 |
+
"torch.Size([64, 1])\n",
|
1344 |
+
"torch.Size([64])\n",
|
1345 |
+
"torch.Size([64, 59])\n",
|
1346 |
+
"torch.Size([64, 1])\n",
|
1347 |
+
"torch.Size([64])\n",
|
1348 |
+
"torch.Size([64, 57])\n",
|
1349 |
+
"torch.Size([64, 1])\n",
|
1350 |
+
"torch.Size([64])\n",
|
1351 |
+
"torch.Size([64, 60])\n",
|
1352 |
+
"torch.Size([64, 1])\n",
|
1353 |
+
"torch.Size([64])\n",
|
1354 |
+
"torch.Size([64, 54])\n",
|
1355 |
+
"torch.Size([64, 1])\n",
|
1356 |
+
"torch.Size([64])\n",
|
1357 |
+
"torch.Size([64, 51])\n",
|
1358 |
+
"torch.Size([64, 1])\n",
|
1359 |
+
"torch.Size([64])\n",
|
1360 |
+
"torch.Size([64, 70])\n",
|
1361 |
+
"torch.Size([64, 1])\n",
|
1362 |
+
"torch.Size([64])\n",
|
1363 |
+
"torch.Size([64, 53])\n",
|
1364 |
+
"torch.Size([64, 1])\n",
|
1365 |
+
"torch.Size([64])\n",
|
1366 |
+
"torch.Size([64, 59])\n",
|
1367 |
+
"torch.Size([64, 1])\n",
|
1368 |
+
"torch.Size([64])\n",
|
1369 |
+
"torch.Size([64, 79])\n",
|
1370 |
+
"torch.Size([64, 1])\n",
|
1371 |
+
"torch.Size([64])\n",
|
1372 |
+
"torch.Size([64, 59])\n",
|
1373 |
+
"torch.Size([64, 1])\n",
|
1374 |
+
"torch.Size([64])\n",
|
1375 |
+
"torch.Size([64, 79])\n",
|
1376 |
+
"torch.Size([64, 1])\n",
|
1377 |
+
"torch.Size([64])\n",
|
1378 |
+
"torch.Size([64, 63])\n",
|
1379 |
+
"torch.Size([64, 1])\n",
|
1380 |
+
"torch.Size([64])\n",
|
1381 |
+
"torch.Size([64, 53])\n",
|
1382 |
+
"torch.Size([64, 1])\n",
|
1383 |
+
"torch.Size([64])\n",
|
1384 |
+
"torch.Size([64, 55])\n",
|
1385 |
+
"torch.Size([64, 1])\n",
|
1386 |
+
"torch.Size([64])\n",
|
1387 |
+
"torch.Size([64, 57])\n",
|
1388 |
+
"torch.Size([64, 1])\n",
|
1389 |
+
"torch.Size([64])\n",
|
1390 |
+
"torch.Size([64, 53])\n",
|
1391 |
+
"torch.Size([64, 1])\n",
|
1392 |
+
"torch.Size([64])\n",
|
1393 |
+
"torch.Size([64, 59])\n",
|
1394 |
+
"torch.Size([64, 1])\n",
|
1395 |
+
"torch.Size([64])\n"
|
1396 |
+
]
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"ename": "KeyboardInterrupt",
|
1400 |
+
"evalue": "",
|
1401 |
+
"output_type": "error",
|
1402 |
+
"traceback": [
|
1403 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1404 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
1405 |
+
"Cell \u001b[0;32mIn[7], line 28\u001b[0m\n\u001b[1;32m 18\u001b[0m data_collator \u001b[38;5;241m=\u001b[39m DataCollatorWithPadding(tokenizer\u001b[38;5;241m=\u001b[39mtokenizer)\n\u001b[1;32m 19\u001b[0m trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 20\u001b[0m model\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[1;32m 21\u001b[0m args\u001b[38;5;241m=\u001b[39mtraining_args,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 25\u001b[0m data_collator\u001b[38;5;241m=\u001b[39mdata_collator,\n\u001b[1;32m 26\u001b[0m )\n\u001b[0;32m---> 28\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 29\u001b[0m trainer\u001b[38;5;241m.\u001b[39mpush_to_hub(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfactual-consistency-regression-ja\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
|
1406 |
+
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1582\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1579\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1580\u001b[0m \u001b[38;5;66;03m# Disable progress bars when uploading models during checkpoints to avoid polluting stdout\u001b[39;00m\n\u001b[1;32m 1581\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39mdisable_progress_bars()\n\u001b[0;32m-> 1582\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1583\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1584\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1585\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1586\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1587\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1588\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 1589\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n",
|
1407 |
+
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1950\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1945\u001b[0m nn\u001b[38;5;241m.\u001b[39mutils\u001b[38;5;241m.\u001b[39mclip_grad_norm_(\n\u001b[1;32m 1946\u001b[0m amp\u001b[38;5;241m.\u001b[39mmaster_params(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptimizer),\n\u001b[1;32m 1947\u001b[0m args\u001b[38;5;241m.\u001b[39mmax_grad_norm,\n\u001b[1;32m 1948\u001b[0m )\n\u001b[1;32m 1949\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1950\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maccelerator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclip_grad_norm_\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1951\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1952\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_grad_norm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1953\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1955\u001b[0m \u001b[38;5;66;03m# Optimizer step\u001b[39;00m\n\u001b[1;32m 1956\u001b[0m optimizer_was_run \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
|
1408 |
+
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/accelerate/accelerator.py:2121\u001b[0m, in \u001b[0;36mAccelerator.clip_grad_norm_\u001b[0;34m(self, parameters, max_norm, norm_type)\u001b[0m\n\u001b[1;32m 2119\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 2120\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munscale_gradients()\n\u001b[0;32m-> 2121\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mutils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclip_grad_norm_\u001b[49m\u001b[43m(\u001b[49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_norm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnorm_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnorm_type\u001b[49m\u001b[43m)\u001b[49m\n",
|
1409 |
+
"File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch_xla/_patched_functions.py:49\u001b[0m, in \u001b[0;36mclip_grad_norm_\u001b[0;34m(parameters, max_norm, norm_type, error_if_nonfinite, foreach)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m error_if_nonfinite \u001b[38;5;129;01mand\u001b[39;00m (total_norm\u001b[38;5;241m.\u001b[39misnan() \u001b[38;5;129;01mor\u001b[39;00m total_norm\u001b[38;5;241m.\u001b[39misinf()):\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 46\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe norm of order \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnorm_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m for a gradient from `parameters` \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 47\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mis non-finite, so it cannot be clipped. This error can be \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdisabled with `error_if_nonfinite=False`\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 49\u001b[0m clip_coef \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtensor\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmax_norm\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m/\u001b[39m (total_norm \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1e-6\u001b[39m)\n\u001b[1;32m 50\u001b[0m clip_value \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mwhere(clip_coef \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m1\u001b[39m, clip_coef,\n\u001b[1;32m 51\u001b[0m torch\u001b[38;5;241m.\u001b[39mtensor(\u001b[38;5;241m1.\u001b[39m, device\u001b[38;5;241m=\u001b[39mdevice))\n\u001b[1;32m 52\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m parameters:\n",
|
1410 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
1411 |
+
]
|
1412 |
+
}
|
1413 |
+
],
|
1414 |
+
"source": [
|
1415 |
+
"model = ConsistentSentenceRegressor(\n",
|
1416 |
+
" freeze_bert=True)\n",
|
1417 |
+
"\n",
|
1418 |
+
"training_args = TrainingArguments(\n",
|
1419 |
+
" output_dir=\".\",\n",
|
1420 |
+
" learning_rate=1e-5,\n",
|
1421 |
+
" per_device_train_batch_size=64,\n",
|
1422 |
+
" num_train_epochs=100,\n",
|
1423 |
+
" weight_decay=0.02,\n",
|
1424 |
+
" evaluation_strategy=\"epoch\",\n",
|
1425 |
+
" eval_accumulation_steps=1,\n",
|
1426 |
+
" save_strategy=\"epoch\",\n",
|
1427 |
+
" load_best_model_at_end=True,\n",
|
1428 |
+
" push_to_hub=True,\n",
|
1429 |
+
")\n",
|
1430 |
+
"\n",
|
1431 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
1432 |
+
"trainer = Trainer(\n",
|
1433 |
+
" model=model,\n",
|
1434 |
+
" args=training_args,\n",
|
1435 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
1436 |
+
" eval_dataset=tokenized_dataset[\"test\"],\n",
|
1437 |
+
" tokenizer=tokenizer,\n",
|
1438 |
+
" data_collator=data_collator,\n",
|
1439 |
+
")\n",
|
1440 |
+
"\n",
|
1441 |
+
"trainer.train()\n",
|
1442 |
+
"trainer.push_to_hub('factual-consistency-regression-ja')"
|
1443 |
+
]
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"cell_type": "code",
|
1447 |
+
"execution_count": null,
|
1448 |
+
"id": "a6eb93f7-5a38-49a2-be0d-e42267e23a0a",
|
1449 |
+
"metadata": {},
|
1450 |
+
"outputs": [],
|
1451 |
+
"source": []
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"cell_type": "code",
|
1455 |
+
"execution_count": null,
|
1456 |
+
"id": "3638c8d8-fc85-4caf-83a4-4fd2ad6fb95d",
|
1457 |
+
"metadata": {},
|
1458 |
+
"outputs": [],
|
1459 |
+
"source": []
|
1460 |
+
}
|
1461 |
+
],
|
1462 |
+
"metadata": {
|
1463 |
+
"environment": {
|
1464 |
+
"kernel": "python3",
|
1465 |
+
"name": "pytorch-gpu.2-0.m112",
|
1466 |
+
"type": "gcloud",
|
1467 |
+
"uri": "gcr.io/deeplearning-platform-release/pytorch-gpu.2-0:m112"
|
1468 |
+
},
|
1469 |
+
"kernelspec": {
|
1470 |
+
"display_name": "Python 3",
|
1471 |
+
"language": "python",
|
1472 |
+
"name": "python3"
|
1473 |
+
},
|
1474 |
+
"language_info": {
|
1475 |
+
"codemirror_mode": {
|
1476 |
+
"name": "ipython",
|
1477 |
+
"version": 3
|
1478 |
+
},
|
1479 |
+
"file_extension": ".py",
|
1480 |
+
"mimetype": "text/x-python",
|
1481 |
+
"name": "python",
|
1482 |
+
"nbconvert_exporter": "python",
|
1483 |
+
"pygments_lexer": "ipython3",
|
1484 |
+
"version": "3.10.12"
|
1485 |
+
}
|
1486 |
+
},
|
1487 |
+
"nbformat": 4,
|
1488 |
+
"nbformat_minor": 5
|
1489 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d7456b16ac0d734668b10f0a43291751cb4c4aa6ce7c6112c5e87aaf79a0413
|
3 |
+
size 4027
|
utils.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
import numpy as np
|
5 |
+
import evaluate
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModel, DistilBertForSequenceClassification
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
SEP_TOKEN = '[SEP]'
|
12 |
+
LABEL2NUM = {'entailment': 1, 'neutral': 0.5, 'contradiction': 0}
|
13 |
+
|
14 |
+
def format_dataset(arr):
|
15 |
+
text = [el['sentence1'] + SEP_TOKEN + el['sentence2'] for el in arr]
|
16 |
+
label = [LABEL2NUM[el['label']] for el in arr]
|
17 |
+
new_df = pd.DataFrame({'text': text, 'label': label})
|
18 |
+
return new_df.sample(frac=1, random_state=42).reset_index(drop=True)
|
19 |
+
|
20 |
+
# Load dataset
|
21 |
+
def load_dataset(path):
|
22 |
+
train_array = []
|
23 |
+
with open(path) as f:
|
24 |
+
for line in f.readlines():
|
25 |
+
if line:
|
26 |
+
train_array.append(json.loads(line))
|
27 |
+
df = format_dataset(train_array)
|
28 |
+
# Split dataset into train and val
|
29 |
+
df_train = df.iloc[512:, :]
|
30 |
+
# We do not need much test data
|
31 |
+
df_test = df.iloc[:512, :]
|
32 |
+
print(df_train[:10])
|
33 |
+
print(df_test[:10])
|
34 |
+
|
35 |
+
factual_consistency_dataset = datasets.dataset_dict.DatasetDict()
|
36 |
+
factual_consistency_dataset["train"] = datasets.dataset_dict.Dataset.from_pandas(
|
37 |
+
df_train[["text", "label"]])
|
38 |
+
factual_consistency_dataset["test"] = datasets.dataset_dict.Dataset.from_pandas(
|
39 |
+
df_test[["text", "label"]])
|
40 |
+
|
41 |
+
return factual_consistency_dataset
|
42 |
+
|
43 |
+
|
44 |
+
class ConsistentSentenceRegressor(DistilBertForSequenceClassification):
|
45 |
+
|
46 |
+
def __init__(self, freeze_bert=True):
|
47 |
+
base_model = AutoModel.from_pretrained(
|
48 |
+
'line-corporation/line-distilbert-base-japanese')
|
49 |
+
|
50 |
+
config = base_model.config
|
51 |
+
config.problem_type = "regression"
|
52 |
+
config.num_labels = 1
|
53 |
+
super(ConsistentSentenceRegressor, self).__init__(config=config)
|
54 |
+
|
55 |
+
self.distilbert = base_model
|
56 |
+
|
57 |
+
# Replace the classifier with a single-neuron linear layer for regression
|
58 |
+
self.classifier = torch.nn.Linear(config.dim, config.num_labels)
|
59 |
+
|
60 |
+
if not freeze_bert:
|
61 |
+
return
|
62 |
+
|
63 |
+
for param in self.distilbert.parameters():
|
64 |
+
param.requires_grad = False
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_ids: Optional[torch.Tensor] = None,
|
69 |
+
attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
head_mask: Optional[torch.Tensor] = None,
|
71 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
72 |
+
labels: Optional[torch.LongTensor] = None,
|
73 |
+
output_attentions: Optional[bool] = None,
|
74 |
+
output_hidden_states: Optional[bool] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
):
|
77 |
+
print(input_ids.shape)
|
78 |
+
outputs = super().forward(
|
79 |
+
input_ids=input_ids,
|
80 |
+
attention_mask=attention_mask,
|
81 |
+
head_mask=head_mask,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
labels=labels,
|
84 |
+
output_attentions=output_attentions,
|
85 |
+
output_hidden_states=output_hidden_states,
|
86 |
+
return_dict=return_dict
|
87 |
+
)
|
88 |
+
print(outputs.logits.shape)
|
89 |
+
logits = outputs.logits.squeeze(-1) # Remove the last dimension to match target tensor shape
|
90 |
+
|
91 |
+
print(logits.shape)
|
92 |
+
|
93 |
+
|
94 |
+
return logits
|
95 |
+
|
96 |
+
|
97 |
+
# Set up evaluation metridef get_metrics():
|
98 |
+
|
99 |
+
def get_metrics():
|
100 |
+
metric = evaluate.load("mse")
|
101 |
+
|
102 |
+
def compute_metrics(eval_pred):
|
103 |
+
predictions, labels = eval_pred
|
104 |
+
print(predictions.shape)
|
105 |
+
print(labels.shape)
|
106 |
+
return metric.compute(predictions=predictions, references=labels)
|
107 |
+
|
108 |
+
return compute_metrics
|