ljones commited on
Commit
dd97931
·
1 Parent(s): cab8946

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.53 +/- 0.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6307814ae67341d9741022a2a9a9e8462b395837adef18638fcd36c3df61aef
3
+ size 108100
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa47be4b0d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fa47be4d040>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679684676619829658,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1rTMv5L51D+hSdS/LqWAPyrBO75ulim/74rBv+CJZr4oU7G/i0q6vfhX0D8MP4s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]]",
60
+ "desired_goal": "[[-1.5992687 1.6638663 -1.658497 ]\n [ 1.0050409 -0.18335405 -0.6624516 ]\n [-1.5120524 -0.22513533 -1.3853502 ]\n [-0.09096249 1.6276846 1.0878615 ]]",
61
+ "observation": "[[ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA77cIPuHHq7wR2Mw95I0RvpM/FD1tAJk+Mb3fvd/Y2T3yEr08d4Llvbh8Aj0fEZc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.13351415 -0.02096933 0.10002149]\n [-0.14214283 0.03619344 0.29883137]\n [-0.10924757 0.10637068 0.02308032]\n [-0.11206525 0.03185722 0.2950525 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi1BsBU3rAcCUhpRSlIwBbJRLMowBdJRHQKdxBrN4Z/F1fZQoaAZoCWgPQwjt72yP3jD0v5SGlFKUaBVLMmgWR0CncMt29tdidX2UKGgGaAloD0MIIEQy5Nj6/L+UhpRSlGgVSzJoFkdAp3CPhOxja3V9lChoBmgJaA9DCOVhodY0L/a/lIaUUpRoFUsyaBZHQKdwUQHRkVh1fZQoaAZoCWgPQwhcyvli78X2v5SGlFKUaBVLMmgWR0CncuIDgZTAdX2UKGgGaAloD0MILPAV3XqN9r+UhpRSlGgVSzJoFkdAp3Km9DhLoXV9lChoBmgJaA9DCGPTSiGQC/O/lIaUUpRoFUsyaBZHQKdyavmozep1fZQoaAZoCWgPQwjSqMDJNvD4v5SGlFKUaBVLMmgWR0CnciyIHkcTdX2UKGgGaAloD0MIlGqfjsfMAsCUhpRSlGgVSzJoFkdAp3R0G7jDK3V9lChoBmgJaA9DCMgnZOdtrPe/lIaUUpRoFUsyaBZHQKd0OBeXzDp1fZQoaAZoCWgPQwiI2cu209brv5SGlFKUaBVLMmgWR0Cnc/tNi6QOdX2UKGgGaAloD0MIDD1i9NzC57+UhpRSlGgVSzJoFkdAp3O8EeQuEnV9lChoBmgJaA9DCMnGgy12e+q/lIaUUpRoFUsyaBZHQKd1icJ+lTF1fZQoaAZoCWgPQwgXYYpyaXz1v5SGlFKUaBVLMmgWR0CndU2eHzpYdX2UKGgGaAloD0MIYto391eP57+UhpRSlGgVSzJoFkdAp3UQrc0tRXV9lChoBmgJaA9DCKlnQSjvI/C/lIaUUpRoFUsyaBZHQKd00UHIIWx1fZQoaAZoCWgPQwgfZ5qw/WTxv5SGlFKUaBVLMmgWR0CndqUFB6a9dX2UKGgGaAloD0MIrhIsDmd+BsCUhpRSlGgVSzJoFkdAp3ZovexfOXV9lChoBmgJaA9DCMh6avXVlfa/lIaUUpRoFUsyaBZHQKd2K9bHIZJ1fZQoaAZoCWgPQwiCb5o+OyDzv5SGlFKUaBVLMmgWR0CndezTF2mpdX2UKGgGaAloD0MIW0HTEisj6r+UhpRSlGgVSzJoFkdAp3fEhs67unV9lChoBmgJaA9DCMql8Quv5Pa/lIaUUpRoFUsyaBZHQKd3iFK02Lp1fZQoaAZoCWgPQwj2twTgnxL4v5SGlFKUaBVLMmgWR0Cnd0tnXd0rdX2UKGgGaAloD0MI7ncoCvQJCcCUhpRSlGgVSzJoFkdAp3cMqUeMh3V9lChoBmgJaA9DCJgycEBLl/y/lIaUUpRoFUsyaBZHQKd41k92X9l1fZQoaAZoCWgPQwheZAJ+jeTzv5SGlFKUaBVLMmgWR0CneJoSlFc6dX2UKGgGaAloD0MINq0UArlE9L+UhpRSlGgVSzJoFkdAp3hdJcxCY3V9lChoBmgJaA9DCHU90XXhR/a/lIaUUpRoFUsyaBZHQKd4HZeRgZ11fZQoaAZoCWgPQwir0asBSsP7v5SGlFKUaBVLMmgWR0CneeirtE5RdX2UKGgGaAloD0MIjUephCd0+7+UhpRSlGgVSzJoFkdAp3msbgjyF3V9lChoBmgJaA9DCBrfF5eq1AjAlIaUUpRoFUsyaBZHQKd5b6yB06p1fZQoaAZoCWgPQwgrptJPOFsBwJSGlFKUaBVLMmgWR0CneTA+hXbNdX2UKGgGaAloD0MIwMx38BPH9L+UhpRSlGgVSzJoFkdAp3r6DZlFt3V9lChoBmgJaA9DCOdQhqqYSua/lIaUUpRoFUsyaBZHQKd6vechC+l1fZQoaAZoCWgPQwjCiH0CKKYAwJSGlFKUaBVLMmgWR0CneoD0UXYUdX2UKGgGaAloD0MI1uWUgJgE67+UhpRSlGgVSzJoFkdAp3pBZU1hs3V9lChoBmgJaA9DCChFK/cCs/W/lIaUUpRoFUsyaBZHQKd8DexfOUt1fZQoaAZoCWgPQwhda+9TVSj5v5SGlFKUaBVLMmgWR0Cne9HI6r/9dX2UKGgGaAloD0MIpOTVOQZk9L+UhpRSlGgVSzJoFkdAp3uU4vN/v3V9lChoBmgJaA9DCPwaSYJwBfq/lIaUUpRoFUsyaBZHQKd7VYODrZ91fZQoaAZoCWgPQwgoDwu1prn0v5SGlFKUaBVLMmgWR0CnfSh2fTTfdX2UKGgGaAloD0MIS+ZY3lXP/7+UhpRSlGgVSzJoFkdAp3zsVLzwt3V9lChoBmgJaA9DCG6LMhtkUgDAlIaUUpRoFUsyaBZHQKd8r30wrUd1fZQoaAZoCWgPQwgIHt/eNWjwv5SGlFKUaBVLMmgWR0CnfG/lhgE2dX2UKGgGaAloD0MIRWgEG9f//7+UhpRSlGgVSzJoFkdAp35OW8h9s3V9lChoBmgJaA9DCKtefqfJjPu/lIaUUpRoFUsyaBZHQKd+EjzqbBp1fZQoaAZoCWgPQwjyW3Sy1Pryv5SGlFKUaBVLMmgWR0CnfdVeKKpDdX2UKGgGaAloD0MI9dVVgVoM9b+UhpRSlGgVSzJoFkdAp32VyeZof3V9lChoBmgJaA9DCPVlaafmcv+/lIaUUpRoFUsyaBZHQKd/bQ0oBq91fZQoaAZoCWgPQwgm/b0UHjQBwJSGlFKUaBVLMmgWR0CnfzDxLCemdX2UKGgGaAloD0MI4uoAiLu687+UhpRSlGgVSzJoFkdAp370Eq2BrnV9lChoBmgJaA9DCORnI9dNafW/lIaUUpRoFUsyaBZHQKd+tLxI8Qt1fZQoaAZoCWgPQwgCuFm8WBjzv5SGlFKUaBVLMmgWR0CngIwhGH58dX2UKGgGaAloD0MIvalIhbHFBsCUhpRSlGgVSzJoFkdAp4BQIWxhUnV9lChoBmgJaA9DCKEUrdwLzPu/lIaUUpRoFUsyaBZHQKeAE1mapgl1fZQoaAZoCWgPQwgcXhCRmlYIwJSGlFKUaBVLMmgWR0Cnf9QIt16mdX2UKGgGaAloD0MI+nspPGj27r+UhpRSlGgVSzJoFkdAp4Gp1ie/YnV9lChoBmgJaA9DCML2kzE+zPm/lIaUUpRoFUsyaBZHQKeBbcRlHz91fZQoaAZoCWgPQwgHeqhtw6j4v5SGlFKUaBVLMmgWR0CngTD/EOy3dX2UKGgGaAloD0MIdOygEtcx8b+UhpRSlGgVSzJoFkdAp4DxokAxSHV9lChoBmgJaA9DCOiDZWzoBgHAlIaUUpRoFUsyaBZHQKeC0A4n4PB1fZQoaAZoCWgPQwjTn/1IEZn7v5SGlFKUaBVLMmgWR0CngpP1UVBVdX2UKGgGaAloD0MIyk4/qIsU9b+UhpRSlGgVSzJoFkdAp4JXGXHBDXV9lChoBmgJaA9DCBk74SU4tfW/lIaUUpRoFUsyaBZHQKeCF8AJb+t1fZQoaAZoCWgPQwjRWtHmOHfzv5SGlFKUaBVLMmgWR0Cng+AOBlMAdX2UKGgGaAloD0MIXalnQSiv/7+UhpRSlGgVSzJoFkdAp4Oj7EYO2HV9lChoBmgJaA9DCJ7TLNDukP+/lIaUUpRoFUsyaBZHQKeDZwiqyW11fZQoaAZoCWgPQwi7RsuBHsoBwJSGlFKUaBVLMmgWR0CngyeNtIkJdX2UKGgGaAloD0MIF9S3zOmSA8CUhpRSlGgVSzJoFkdAp4T/sgMc63V9lChoBmgJaA9DCB9JSQ9Da/q/lIaUUpRoFUsyaBZHQKeEw9RrJsB1fZQoaAZoCWgPQwiDFDyFXIkDwJSGlFKUaBVLMmgWR0CnhIb1AZ88dX2UKGgGaAloD0MI9l/nps2YBMCUhpRSlGgVSzJoFkdAp4RHrt3OfXV9lChoBmgJaA9DCAkyAiocYQLAlIaUUpRoFUsyaBZHQKeGFBciW3V1fZQoaAZoCWgPQwieCOI8nAD9v5SGlFKUaBVLMmgWR0CnhdfkvK2bdX2UKGgGaAloD0MIr3jqkQY3/7+UhpRSlGgVSzJoFkdAp4Wa1LJ0XHV9lChoBmgJaA9DCKoLeJlhI/i/lIaUUpRoFUsyaBZHQKeFW09hZyN1fZQoaAZoCWgPQwhB8zl3u572v5SGlFKUaBVLMmgWR0CnhyfbblBAdX2UKGgGaAloD0MIVI7J4v5j97+UhpRSlGgVSzJoFkdAp4brslb/wXV9lChoBmgJaA9DCDP+fcaFgwDAlIaUUpRoFUsyaBZHQKeGrrBTGYN1fZQoaAZoCWgPQwg4S8lyEsr1v5SGlFKUaBVLMmgWR0Cnhm9A5aNddX2UKGgGaAloD0MI8BmJ0Ai287+UhpRSlGgVSzJoFkdAp4hxda+vhnV9lChoBmgJaA9DCGAi3jr/9grAlIaUUpRoFUsyaBZHQKeINmA9V3l1fZQoaAZoCWgPQwh5BaInZZLwv5SGlFKUaBVLMmgWR0Cnh/peu3c6dX2UKGgGaAloD0MIzR39L9ei8b+UhpRSlGgVSzJoFkdAp4e7qKP4mHV9lChoBmgJaA9DCM+Du7N2uwDAlIaUUpRoFUsyaBZHQKeKPKK508x1fZQoaAZoCWgPQwjc8/xpo/oBwJSGlFKUaBVLMmgWR0CnigFQl8gIdX2UKGgGaAloD0MIrYkFvqJb+b+UhpRSlGgVSzJoFkdAp4nE+3YthHV9lChoBmgJaA9DCLWIKCZvQPO/lIaUUpRoFUsyaBZHQKeJhnFHavl1fZQoaAZoCWgPQwgdylAVU6n3v5SGlFKUaBVLMmgWR0CnjACMHbAUdX2UKGgGaAloD0MIrabria5L+7+UhpRSlGgVSzJoFkdAp4vFJBgNPXV9lChoBmgJaA9DCMCzPXrDffy/lIaUUpRoFUsyaBZHQKeLiSSNfgJ1fZQoaAZoCWgPQwh7FRkdkATrv5SGlFKUaBVLMmgWR0Cni0qnWJ7+dX2UKGgGaAloD0MIutqK/WU397+UhpRSlGgVSzJoFkdAp43Ox0MgEHV9lChoBmgJaA9DCCYA/5Qqkfi/lIaUUpRoFUsyaBZHQKeNk5IYm9h1fZQoaAZoCWgPQwiSByKLNDHzv5SGlFKUaBVLMmgWR0CnjVfG2kSFdX2UKGgGaAloD0MIW1t4Xio2/r+UhpRSlGgVSzJoFkdAp40ZMHryD3V9lChoBmgJaA9DCDZXzXNEfgXAlIaUUpRoFUsyaBZHQKePnF8XvYx1fZQoaAZoCWgPQwhUck7soX3sv5SGlFKUaBVLMmgWR0Cnj2E9lmOEdX2UKGgGaAloD0MIzjXM0Hhi9b+UhpRSlGgVSzJoFkdAp48lat9x63V9lChoBmgJaA9DCHZUNUHUPfa/lIaUUpRoFUsyaBZHQKeO5y7PIGR1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ae2c33a2d798dd6c0fd8e7b44c253be63a57dd25fb5f34bb271704d495585f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eea397a058484c8beca08c2c397aa0e471dcaa5ddf2d20e751bab5395dfff7d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa47be4b0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa47be4d040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679684676619829658, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/hcnaPsIFgTsMmQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1rTMv5L51D+hSdS/LqWAPyrBO75ulim/74rBv+CJZr4oU7G/i0q6vfhX0D8MP4s/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmFydo+wgWBOwyZDD9XbgA7Hx+gOpuJgrmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]\n [0.42731872 0.00393745 0.5492103 ]]", "desired_goal": "[[-1.5992687 1.6638663 -1.658497 ]\n [ 1.0050409 -0.18335405 -0.6624516 ]\n [-1.5120524 -0.22513533 -1.3853502 ]\n [-0.09096249 1.6276846 1.0878615 ]]", "observation": "[[ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]\n [ 4.2731872e-01 3.9374540e-03 5.4921031e-01 1.9597018e-03\n 1.2216306e-03 -2.4898056e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA77cIPuHHq7wR2Mw95I0RvpM/FD1tAJk+Mb3fvd/Y2T3yEr08d4Llvbh8Aj0fEZc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13351415 -0.02096933 0.10002149]\n [-0.14214283 0.03619344 0.29883137]\n [-0.10924757 0.10637068 0.02308032]\n [-0.11206525 0.03185722 0.2950525 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi1BsBU3rAcCUhpRSlIwBbJRLMowBdJRHQKdxBrN4Z/F1fZQoaAZoCWgPQwjt72yP3jD0v5SGlFKUaBVLMmgWR0CncMt29tdidX2UKGgGaAloD0MIIEQy5Nj6/L+UhpRSlGgVSzJoFkdAp3CPhOxja3V9lChoBmgJaA9DCOVhodY0L/a/lIaUUpRoFUsyaBZHQKdwUQHRkVh1fZQoaAZoCWgPQwhcyvli78X2v5SGlFKUaBVLMmgWR0CncuIDgZTAdX2UKGgGaAloD0MILPAV3XqN9r+UhpRSlGgVSzJoFkdAp3Km9DhLoXV9lChoBmgJaA9DCGPTSiGQC/O/lIaUUpRoFUsyaBZHQKdyavmozep1fZQoaAZoCWgPQwjSqMDJNvD4v5SGlFKUaBVLMmgWR0CnciyIHkcTdX2UKGgGaAloD0MIlGqfjsfMAsCUhpRSlGgVSzJoFkdAp3R0G7jDK3V9lChoBmgJaA9DCMgnZOdtrPe/lIaUUpRoFUsyaBZHQKd0OBeXzDp1fZQoaAZoCWgPQwiI2cu209brv5SGlFKUaBVLMmgWR0Cnc/tNi6QOdX2UKGgGaAloD0MIDD1i9NzC57+UhpRSlGgVSzJoFkdAp3O8EeQuEnV9lChoBmgJaA9DCMnGgy12e+q/lIaUUpRoFUsyaBZHQKd1icJ+lTF1fZQoaAZoCWgPQwgXYYpyaXz1v5SGlFKUaBVLMmgWR0CndU2eHzpYdX2UKGgGaAloD0MIYto391eP57+UhpRSlGgVSzJoFkdAp3UQrc0tRXV9lChoBmgJaA9DCKlnQSjvI/C/lIaUUpRoFUsyaBZHQKd00UHIIWx1fZQoaAZoCWgPQwgfZ5qw/WTxv5SGlFKUaBVLMmgWR0CndqUFB6a9dX2UKGgGaAloD0MIrhIsDmd+BsCUhpRSlGgVSzJoFkdAp3ZovexfOXV9lChoBmgJaA9DCMh6avXVlfa/lIaUUpRoFUsyaBZHQKd2K9bHIZJ1fZQoaAZoCWgPQwiCb5o+OyDzv5SGlFKUaBVLMmgWR0CndezTF2mpdX2UKGgGaAloD0MIW0HTEisj6r+UhpRSlGgVSzJoFkdAp3fEhs67unV9lChoBmgJaA9DCMql8Quv5Pa/lIaUUpRoFUsyaBZHQKd3iFK02Lp1fZQoaAZoCWgPQwj2twTgnxL4v5SGlFKUaBVLMmgWR0Cnd0tnXd0rdX2UKGgGaAloD0MI7ncoCvQJCcCUhpRSlGgVSzJoFkdAp3cMqUeMh3V9lChoBmgJaA9DCJgycEBLl/y/lIaUUpRoFUsyaBZHQKd41k92X9l1fZQoaAZoCWgPQwheZAJ+jeTzv5SGlFKUaBVLMmgWR0CneJoSlFc6dX2UKGgGaAloD0MINq0UArlE9L+UhpRSlGgVSzJoFkdAp3hdJcxCY3V9lChoBmgJaA9DCHU90XXhR/a/lIaUUpRoFUsyaBZHQKd4HZeRgZ11fZQoaAZoCWgPQwir0asBSsP7v5SGlFKUaBVLMmgWR0CneeirtE5RdX2UKGgGaAloD0MIjUephCd0+7+UhpRSlGgVSzJoFkdAp3msbgjyF3V9lChoBmgJaA9DCBrfF5eq1AjAlIaUUpRoFUsyaBZHQKd5b6yB06p1fZQoaAZoCWgPQwgrptJPOFsBwJSGlFKUaBVLMmgWR0CneTA+hXbNdX2UKGgGaAloD0MIwMx38BPH9L+UhpRSlGgVSzJoFkdAp3r6DZlFt3V9lChoBmgJaA9DCOdQhqqYSua/lIaUUpRoFUsyaBZHQKd6vechC+l1fZQoaAZoCWgPQwjCiH0CKKYAwJSGlFKUaBVLMmgWR0CneoD0UXYUdX2UKGgGaAloD0MI1uWUgJgE67+UhpRSlGgVSzJoFkdAp3pBZU1hs3V9lChoBmgJaA9DCChFK/cCs/W/lIaUUpRoFUsyaBZHQKd8DexfOUt1fZQoaAZoCWgPQwhda+9TVSj5v5SGlFKUaBVLMmgWR0Cne9HI6r/9dX2UKGgGaAloD0MIpOTVOQZk9L+UhpRSlGgVSzJoFkdAp3uU4vN/v3V9lChoBmgJaA9DCPwaSYJwBfq/lIaUUpRoFUsyaBZHQKd7VYODrZ91fZQoaAZoCWgPQwgoDwu1prn0v5SGlFKUaBVLMmgWR0CnfSh2fTTfdX2UKGgGaAloD0MIS+ZY3lXP/7+UhpRSlGgVSzJoFkdAp3zsVLzwt3V9lChoBmgJaA9DCG6LMhtkUgDAlIaUUpRoFUsyaBZHQKd8r30wrUd1fZQoaAZoCWgPQwgIHt/eNWjwv5SGlFKUaBVLMmgWR0CnfG/lhgE2dX2UKGgGaAloD0MIRWgEG9f//7+UhpRSlGgVSzJoFkdAp35OW8h9s3V9lChoBmgJaA9DCKtefqfJjPu/lIaUUpRoFUsyaBZHQKd+EjzqbBp1fZQoaAZoCWgPQwjyW3Sy1Pryv5SGlFKUaBVLMmgWR0CnfdVeKKpDdX2UKGgGaAloD0MI9dVVgVoM9b+UhpRSlGgVSzJoFkdAp32VyeZof3V9lChoBmgJaA9DCPVlaafmcv+/lIaUUpRoFUsyaBZHQKd/bQ0oBq91fZQoaAZoCWgPQwgm/b0UHjQBwJSGlFKUaBVLMmgWR0CnfzDxLCemdX2UKGgGaAloD0MI4uoAiLu687+UhpRSlGgVSzJoFkdAp370Eq2BrnV9lChoBmgJaA9DCORnI9dNafW/lIaUUpRoFUsyaBZHQKd+tLxI8Qt1fZQoaAZoCWgPQwgCuFm8WBjzv5SGlFKUaBVLMmgWR0CngIwhGH58dX2UKGgGaAloD0MIvalIhbHFBsCUhpRSlGgVSzJoFkdAp4BQIWxhUnV9lChoBmgJaA9DCKEUrdwLzPu/lIaUUpRoFUsyaBZHQKeAE1mapgl1fZQoaAZoCWgPQwgcXhCRmlYIwJSGlFKUaBVLMmgWR0Cnf9QIt16mdX2UKGgGaAloD0MI+nspPGj27r+UhpRSlGgVSzJoFkdAp4Gp1ie/YnV9lChoBmgJaA9DCML2kzE+zPm/lIaUUpRoFUsyaBZHQKeBbcRlHz91fZQoaAZoCWgPQwgHeqhtw6j4v5SGlFKUaBVLMmgWR0CngTD/EOy3dX2UKGgGaAloD0MIdOygEtcx8b+UhpRSlGgVSzJoFkdAp4DxokAxSHV9lChoBmgJaA9DCOiDZWzoBgHAlIaUUpRoFUsyaBZHQKeC0A4n4PB1fZQoaAZoCWgPQwjTn/1IEZn7v5SGlFKUaBVLMmgWR0CngpP1UVBVdX2UKGgGaAloD0MIyk4/qIsU9b+UhpRSlGgVSzJoFkdAp4JXGXHBDXV9lChoBmgJaA9DCBk74SU4tfW/lIaUUpRoFUsyaBZHQKeCF8AJb+t1fZQoaAZoCWgPQwjRWtHmOHfzv5SGlFKUaBVLMmgWR0Cng+AOBlMAdX2UKGgGaAloD0MIXalnQSiv/7+UhpRSlGgVSzJoFkdAp4Oj7EYO2HV9lChoBmgJaA9DCJ7TLNDukP+/lIaUUpRoFUsyaBZHQKeDZwiqyW11fZQoaAZoCWgPQwi7RsuBHsoBwJSGlFKUaBVLMmgWR0CngyeNtIkJdX2UKGgGaAloD0MIF9S3zOmSA8CUhpRSlGgVSzJoFkdAp4T/sgMc63V9lChoBmgJaA9DCB9JSQ9Da/q/lIaUUpRoFUsyaBZHQKeEw9RrJsB1fZQoaAZoCWgPQwiDFDyFXIkDwJSGlFKUaBVLMmgWR0CnhIb1AZ88dX2UKGgGaAloD0MI9l/nps2YBMCUhpRSlGgVSzJoFkdAp4RHrt3OfXV9lChoBmgJaA9DCAkyAiocYQLAlIaUUpRoFUsyaBZHQKeGFBciW3V1fZQoaAZoCWgPQwieCOI8nAD9v5SGlFKUaBVLMmgWR0CnhdfkvK2bdX2UKGgGaAloD0MIr3jqkQY3/7+UhpRSlGgVSzJoFkdAp4Wa1LJ0XHV9lChoBmgJaA9DCKoLeJlhI/i/lIaUUpRoFUsyaBZHQKeFW09hZyN1fZQoaAZoCWgPQwhB8zl3u572v5SGlFKUaBVLMmgWR0CnhyfbblBAdX2UKGgGaAloD0MIVI7J4v5j97+UhpRSlGgVSzJoFkdAp4brslb/wXV9lChoBmgJaA9DCDP+fcaFgwDAlIaUUpRoFUsyaBZHQKeGrrBTGYN1fZQoaAZoCWgPQwg4S8lyEsr1v5SGlFKUaBVLMmgWR0Cnhm9A5aNddX2UKGgGaAloD0MI8BmJ0Ai287+UhpRSlGgVSzJoFkdAp4hxda+vhnV9lChoBmgJaA9DCGAi3jr/9grAlIaUUpRoFUsyaBZHQKeINmA9V3l1fZQoaAZoCWgPQwh5BaInZZLwv5SGlFKUaBVLMmgWR0Cnh/peu3c6dX2UKGgGaAloD0MIzR39L9ei8b+UhpRSlGgVSzJoFkdAp4e7qKP4mHV9lChoBmgJaA9DCM+Du7N2uwDAlIaUUpRoFUsyaBZHQKeKPKK508x1fZQoaAZoCWgPQwjc8/xpo/oBwJSGlFKUaBVLMmgWR0CnigFQl8gIdX2UKGgGaAloD0MIrYkFvqJb+b+UhpRSlGgVSzJoFkdAp4nE+3YthHV9lChoBmgJaA9DCLWIKCZvQPO/lIaUUpRoFUsyaBZHQKeJhnFHavl1fZQoaAZoCWgPQwgdylAVU6n3v5SGlFKUaBVLMmgWR0CnjACMHbAUdX2UKGgGaAloD0MIrabria5L+7+UhpRSlGgVSzJoFkdAp4vFJBgNPXV9lChoBmgJaA9DCMCzPXrDffy/lIaUUpRoFUsyaBZHQKeLiSSNfgJ1fZQoaAZoCWgPQwh7FRkdkATrv5SGlFKUaBVLMmgWR0Cni0qnWJ7+dX2UKGgGaAloD0MIutqK/WU397+UhpRSlGgVSzJoFkdAp43Ox0MgEHV9lChoBmgJaA9DCCYA/5Qqkfi/lIaUUpRoFUsyaBZHQKeNk5IYm9h1fZQoaAZoCWgPQwiSByKLNDHzv5SGlFKUaBVLMmgWR0CnjVfG2kSFdX2UKGgGaAloD0MIW1t4Xio2/r+UhpRSlGgVSzJoFkdAp40ZMHryD3V9lChoBmgJaA9DCDZXzXNEfgXAlIaUUpRoFUsyaBZHQKePnF8XvYx1fZQoaAZoCWgPQwhUck7soX3sv5SGlFKUaBVLMmgWR0Cnj2E9lmOEdX2UKGgGaAloD0MIzjXM0Hhi9b+UhpRSlGgVSzJoFkdAp48lat9x63V9lChoBmgJaA9DCHZUNUHUPfa/lIaUUpRoFUsyaBZHQKeO5y7PIGR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (707 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.530219811666757, "std_reward": 0.2967989618316416, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T19:56:59.369774"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2555a050e9bc3335668f6ff69df0d9ce3d959b3d6c271edbc444975ad44941
3
+ size 3056