File size: 2,026 Bytes
f097832
 
 
 
 
 
 
 
 
becc4f8
f097832
 
 
 
 
 
 
 
 
 
becc4f8
f097832
becc4f8
f097832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
becc4f8
f097832
becc4f8
 
f097832
 
 
becc4f8
f097832
 
 
becc4f8
 
 
 
 
 
 
 
 
 
 
 
f097832
 
 
 
 
becc4f8
 
f097832
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-gemini1_5flash-256k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma2b-summarize-gemini1_5flash-256k

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5669

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0246        | 0.9976 | 207  | 2.4550          |
| 0.9556        | 2.0    | 415  | 2.4530          |
| 0.9114        | 2.9976 | 622  | 2.4641          |
| 0.8927        | 4.0    | 830  | 2.4882          |
| 0.8752        | 4.9976 | 1037 | 2.5081          |
| 0.8602        | 6.0    | 1245 | 2.5277          |
| 0.8464        | 6.9976 | 1452 | 2.5513          |
| 0.8353        | 8.0    | 1660 | 2.5615          |
| 0.8267        | 8.9976 | 1867 | 2.5674          |
| 0.827         | 9.9759 | 2070 | 2.5669          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1