File size: 2,365 Bytes
4393a03 a217bd8 4393a03 a217bd8 4393a03 a217bd8 4393a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- llama-duo/synth_summarize_dataset_dedup
model-index:
- name: gemma2b-summarize-gpt4o-256k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-summarize-gpt4o-256k
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.1964 | 0.9974 | 292 | 2.4892 |
| 1.0954 | 1.9983 | 585 | 2.4542 |
| 1.0621 | 2.9991 | 878 | 2.4533 |
| 1.0523 | 4.0 | 1171 | 2.4547 |
| 1.0188 | 4.9974 | 1463 | 2.4524 |
| 1.0119 | 5.9983 | 1756 | 2.4544 |
| 1.0028 | 6.9991 | 2049 | 2.4655 |
| 0.9914 | 8.0 | 2342 | 2.4685 |
| 0.9813 | 8.9974 | 2634 | 2.4743 |
| 0.9756 | 9.9983 | 2927 | 2.4803 |
| 0.9815 | 10.9991 | 3220 | 2.4823 |
| 0.9657 | 12.0 | 3513 | 2.4844 |
| 0.9694 | 12.9974 | 3805 | 2.4820 |
| 0.968 | 13.9983 | 4098 | 2.4824 |
| 0.9728 | 14.9616 | 4380 | 2.4823 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |