File size: 1,995 Bytes
2d3c737 600f26e 2d3c737 600f26e 2d3c737 600f26e 2d3c737 600f26e 2d3c737 600f26e 2d3c737 600f26e 2d3c737 600f26e 2d3c737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: gemma
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- generator
model-index:
- name: gemma2b-summarize-gpt4o-64k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-summarize-gpt4o-64k
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6852
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2474 | 1.0 | 146 | 2.5237 |
| 1.1269 | 2.0 | 292 | 2.4805 |
| 1.0909 | 3.0 | 438 | 2.4893 |
| 1.0354 | 4.0 | 584 | 2.5017 |
| 1.0016 | 5.0 | 730 | 2.5295 |
| 0.9823 | 6.0 | 876 | 2.5500 |
| 0.955 | 7.0 | 1022 | 2.5866 |
| 0.9214 | 8.0 | 1168 | 2.6224 |
| 0.913 | 9.0 | 1314 | 2.6512 |
| 0.889 | 10.0 | 1460 | 2.6852 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |