|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Mixtral model configuration""" |
|
|
|
import copy |
|
from typing import Any, Dict |
|
|
|
from transformers import __version__ |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json", |
|
} |
|
|
|
|
|
def recursive_diff_dict(dict_a, dict_b, config_obj=None): |
|
""" |
|
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the |
|
values from `dict_a` that are different from values in `dict_b`. |
|
""" |
|
diff = {} |
|
default = config_obj.__class__().to_dict() if config_obj is not None else {} |
|
for key, value in dict_a.items(): |
|
obj_value = getattr(config_obj, str(key), None) |
|
if ( |
|
isinstance(obj_value, PretrainedConfig) |
|
and key in dict_b |
|
and isinstance(dict_b[key], dict) |
|
): |
|
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value) |
|
if len(diff_value) > 0: |
|
diff[key] = diff_value |
|
elif ( |
|
key not in dict_b |
|
or value != dict_b[key] |
|
or key not in default |
|
or value != default[key] |
|
): |
|
diff[key] = value |
|
return diff |
|
|
|
|
|
class MixtralConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an |
|
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1. |
|
|
|
[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B) |
|
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MixtralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 1000000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
num_experts_per_tok (`int`, *optional*, defaults to 2): |
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing |
|
parameter |
|
num_local_experts (`int`, *optional*, defaults to 8): |
|
Number of experts per Sparse MLP layer. |
|
output_router_logits (`bool`, *optional*, defaults to `False`): |
|
Whether or not the router logits should be returned by the model. Enabeling this will also |
|
allow the model to output the auxiliary loss. See [here]() for more details |
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): |
|
The aux loss factor for the total loss. |
|
|
|
```python |
|
>>> from transformers import MixtralModel, MixtralConfig |
|
|
|
>>> # Initializing a Mixtral 7B style configuration |
|
>>> configuration = MixtralConfig() |
|
|
|
>>> # Initializing a model from the Mixtral 7B style configuration |
|
>>> model = MixtralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "mixtral" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
intermediate_size_residual=None, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=1e6, |
|
sliding_window=4096, |
|
attention_dropout=0.0, |
|
num_experts_per_tok=2, |
|
num_local_experts=8, |
|
scale_factor: float = 1.0, |
|
output_router_logits=False, |
|
router_aux_loss_coef=0.001, |
|
moe_type: str = "modulelist", |
|
num_moe_contract_layers: int = 0, |
|
use_attn_moe: bool = False, |
|
top_k_attn: int = None, |
|
attn_experts: int = None, |
|
scale_factor_attn: float = None, |
|
use_layer_wise_balance: bool = False, |
|
add_rescale_bias: bool = False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.intermediate_size_residual = intermediate_size_residual |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.attention_dropout = attention_dropout |
|
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.num_local_experts = num_local_experts |
|
self.scale_factor = scale_factor |
|
self.output_router_logits = output_router_logits |
|
self.router_aux_loss_coef = router_aux_loss_coef |
|
self.moe_type = moe_type |
|
self.num_moe_contract_layers = num_moe_contract_layers |
|
|
|
|
|
self.use_attn_moe = use_attn_moe |
|
self.top_k_attn = top_k_attn |
|
self.scale_factor_attn = scale_factor_attn |
|
self.attn_experts = attn_experts |
|
|
|
|
|
self.use_layer_wise_balance = use_layer_wise_balance |
|
|
|
|
|
self.add_rescale_bias = add_rescale_bias |
|
|
|
|
|
self._attn_implementation_internal = kwargs.pop("attn_implementation", None) |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def _attn_implementation(self): |
|
|
|
if hasattr(self, "_attn_implementation_internal"): |
|
if self._attn_implementation_internal is None: |
|
|
|
return "flash_attention_2" |
|
|
|
else: |
|
return self._attn_implementation_internal |
|
else: |
|
return "flash_attention_2" |
|
|
|
|
|
|
|
|
|
@_attn_implementation.setter |
|
def _attn_implementation(self, value): |
|
self._attn_implementation_internal = value |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
""" |
|
Serializes this instance to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
if hasattr(self.__class__, "model_type"): |
|
output["model_type"] = self.__class__.model_type |
|
if "_auto_class" in output: |
|
del output["_auto_class"] |
|
if "_commit_hash" in output: |
|
del output["_commit_hash"] |
|
if "_attn_implementation_internal" in output: |
|
del output["_attn_implementation_internal"] |
|
|
|
|
|
output["transformers_version"] = __version__ |
|
|
|
for key, value in output.items(): |
|
|
|
if isinstance(value, PretrainedConfig): |
|
value = value.to_dict() |
|
del value["transformers_version"] |
|
|
|
output[key] = value |
|
|
|
if hasattr(self, "quantization_config"): |
|
output["quantization_config"] = ( |
|
self.quantization_config.to_dict() |
|
if not isinstance(self.quantization_config, dict) |
|
else self.quantization_config |
|
) |
|
|
|
|
|
_ = output.pop("_pre_quantization_dtype", None) |
|
|
|
self.dict_torch_dtype_to_str(output) |
|
|
|
return output |
|
|
|
def to_diff_dict(self) -> Dict[str, Any]: |
|
""" |
|
Removes all attributes from config which correspond to the default config attributes for better readability and |
|
serializes to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
config_dict = self.to_dict() |
|
|
|
|
|
default_config_dict = PretrainedConfig().to_dict() |
|
|
|
|
|
class_config_dict = ( |
|
self.__class__().to_dict() if not self.is_composition else {} |
|
) |
|
|
|
serializable_config_dict = {} |
|
|
|
|
|
for key, value in config_dict.items(): |
|
if ( |
|
isinstance(getattr(self, key, None), PretrainedConfig) |
|
and key in class_config_dict |
|
and isinstance(class_config_dict[key], dict) |
|
): |
|
|
|
diff = recursive_diff_dict( |
|
value, class_config_dict[key], config_obj=getattr(self, key, None) |
|
) |
|
if "model_type" in value: |
|
|
|
diff["model_type"] = value["model_type"] |
|
if len(diff) > 0: |
|
serializable_config_dict[key] = diff |
|
elif ( |
|
key not in default_config_dict |
|
or key == "transformers_version" |
|
or value != default_config_dict[key] |
|
or (key in class_config_dict and value != class_config_dict[key]) |
|
): |
|
serializable_config_dict[key] = value |
|
|
|
if hasattr(self, "quantization_config"): |
|
serializable_config_dict["quantization_config"] = ( |
|
self.quantization_config.to_dict() |
|
if not isinstance(self.quantization_config, dict) |
|
else self.quantization_config |
|
) |
|
|
|
|
|
_ = serializable_config_dict.pop("_pre_quantization_dtype", None) |
|
|
|
self.dict_torch_dtype_to_str(serializable_config_dict) |
|
|
|
if "_attn_implementation_internal" in serializable_config_dict: |
|
del serializable_config_dict["_attn_implementation_internal"] |
|
|
|
return serializable_config_dict |