Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,181 @@
|
|
1 |
---
|
2 |
license: llama2
|
3 |
pipeline_tag: image-text-to-text
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
pipeline_tag: image-text-to-text
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
---
|
7 |
+
|
8 |
+
# LLaVA-NeXT-Video Model Card
|
9 |
+
|
10 |
+
Below is the model card of LLaVa-NeXT-Video model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
|
11 |
+
|
12 |
+
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)
|
13 |
+
|
14 |
+
Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)
|
15 |
+
|
16 |
+
|
17 |
+
## Model details
|
18 |
+
|
19 |
+
**Model type:**
|
20 |
+
<br>
|
21 |
+
LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data.
|
22 |
+
<br>
|
23 |
+
Base LLM: lmsys/vicuna-7b-v1.5
|
24 |
+
|
25 |
+
**Model date:**
|
26 |
+
<br>
|
27 |
+
LLaVA-Next-Video-7B was trained in April 2024.
|
28 |
+
|
29 |
+
**Paper or resources for more information:**
|
30 |
+
<br>
|
31 |
+
https://github.com/LLaVA-VL/LLaVA-NeXT
|
32 |
+
|
33 |
+
|
34 |
+
## How to use the model
|
35 |
+
|
36 |
+
First, make sure to have `transformers >= 4.42.0`.
|
37 |
+
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos:
|
38 |
+
|
39 |
+
Below is an example script to run generation in `float16` precision on a GPU device:
|
40 |
+
|
41 |
+
```python
|
42 |
+
import requests
|
43 |
+
from PIL import Image
|
44 |
+
import av
|
45 |
+
import torch
|
46 |
+
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
47 |
+
|
48 |
+
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
49 |
+
|
50 |
+
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
|
51 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
52 |
+
|
53 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
54 |
+
model_id,
|
55 |
+
torch_dtype=torch.float16,
|
56 |
+
low_cpu_mem_usage=True,
|
57 |
+
).to(0)
|
58 |
+
|
59 |
+
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
60 |
+
|
61 |
+
def read_video_pyav(container, indices):
|
62 |
+
'''
|
63 |
+
Decode the video with PyAV decoder.
|
64 |
+
Args:
|
65 |
+
container (`av.container.input.InputContainer`): PyAV container.
|
66 |
+
indices (`List[int]`): List of frame indices to decode.
|
67 |
+
Returns:
|
68 |
+
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
69 |
+
'''
|
70 |
+
frames = []
|
71 |
+
container.seek(0)
|
72 |
+
start_index = indices[0]
|
73 |
+
end_index = indices[-1]
|
74 |
+
for i, frame in enumerate(container.decode(video=0)):
|
75 |
+
if i > end_index:
|
76 |
+
break
|
77 |
+
if i >= start_index and i in indices:
|
78 |
+
frames.append(frame)
|
79 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
80 |
+
|
81 |
+
prompt = "USER: <video>\nWhy is this video funny? ASSISTANT:"
|
82 |
+
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
83 |
+
container = av.open(video_path)
|
84 |
+
|
85 |
+
# sample uniformly 8 frames from the video
|
86 |
+
total_frames = container.streams.video[0].frames
|
87 |
+
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
88 |
+
clip = read_video_pyav(container, indices)
|
89 |
+
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
|
90 |
+
|
91 |
+
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
|
92 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
93 |
+
```
|
94 |
+
|
95 |
+
### Inference with images as inputs
|
96 |
+
|
97 |
+
To generate from images use the below code after loading the model as shown above:
|
98 |
+
|
99 |
+
```python
|
100 |
+
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
101 |
+
inputs_image = processor(prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
|
102 |
+
|
103 |
+
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
|
104 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
105 |
+
```
|
106 |
+
|
107 |
+
### Inference with images and videos as inputs
|
108 |
+
|
109 |
+
To generate from images and videos in one generate use the below code after loading the model as shown above:
|
110 |
+
|
111 |
+
```python
|
112 |
+
prompts = [
|
113 |
+
"USER: <image>\nWhat's the content of the image? ASSISTANT:",
|
114 |
+
"USER: <video>\nWhy is this video funny? ASSISTANT:"
|
115 |
+
]
|
116 |
+
inputs = processor(text=prompts, images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
|
117 |
+
|
118 |
+
# Generate
|
119 |
+
generate_ids = model.generate(**inputs, max_new_tokens=100)
|
120 |
+
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
121 |
+
print(out)
|
122 |
+
```
|
123 |
+
|
124 |
+
### Model optimization
|
125 |
+
|
126 |
+
#### 4-bit quantization through `bitsandbytes` library
|
127 |
+
|
128 |
+
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
129 |
+
|
130 |
+
```diff
|
131 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
132 |
+
model_id,
|
133 |
+
torch_dtype=torch.float16,
|
134 |
+
low_cpu_mem_usage=True,
|
135 |
+
+ load_in_4bit=True
|
136 |
+
)
|
137 |
+
```
|
138 |
+
|
139 |
+
#### Use Flash-Attention 2 to further speed-up generation
|
140 |
+
|
141 |
+
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
142 |
+
|
143 |
+
```diff
|
144 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
145 |
+
model_id,
|
146 |
+
torch_dtype=torch.float16,
|
147 |
+
low_cpu_mem_usage=True,
|
148 |
+
+ use_flash_attention_2=True
|
149 |
+
).to(0)
|
150 |
+
```
|
151 |
+
|
152 |
+
## License
|
153 |
+
Llama 2 is licensed under the LLAMA 2 Community License,
|
154 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
155 |
+
|
156 |
+
## Intended use
|
157 |
+
**Primary intended uses:**
|
158 |
+
<br>
|
159 |
+
The primary use of LLaVA is research on large multimodal models and chatbots.
|
160 |
+
|
161 |
+
**Primary intended users:**
|
162 |
+
<br>
|
163 |
+
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
164 |
+
|
165 |
+
## Training dataset
|
166 |
+
|
167 |
+
### Image
|
168 |
+
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
|
169 |
+
- 158K GPT-generated multimodal instruction-following data.
|
170 |
+
- 500K academic-task-oriented VQA data mixture.
|
171 |
+
- 50K GPT-4V data mixture.
|
172 |
+
- 40K ShareGPT data.
|
173 |
+
|
174 |
+
### Video
|
175 |
+
- 100K VideoChatGPT-Instruct.
|
176 |
+
|
177 |
+
## Evaluation dataset
|
178 |
+
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.
|
179 |
+
|
180 |
+
|
181 |
+
|