RaushanTurganbay HF staff commited on
Commit
dc5c07d
·
verified ·
1 Parent(s): d727650

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -5
README.md CHANGED
@@ -123,9 +123,18 @@ To generate from images use the below code after loading the model as shown abov
123
  import requests
124
  from PIL import Image
125
 
126
- prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
127
- image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
 
 
 
 
 
 
 
 
128
 
 
129
  raw_image = Image.open(requests.get(image_file, stream=True).raw)
130
  inputs_image = processor(prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
131
 
@@ -142,7 +151,7 @@ conversation_1 = [
142
  {
143
  "role": "user",
144
  "content": [
145
- {"type": "text", "text": "What's the content of the image"},
146
  {"type": "image"},
147
  ],
148
  }
@@ -156,8 +165,8 @@ conversation_2 = [
156
  ],
157
  },
158
  ]
159
- prompt_1 = processor.apply_chat_template(conversation, add_generation_prompt=True)
160
- prompt_2 = processor.apply_chat_template(conversation, add_generation_prompt=True)
161
 
162
  s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
163
 
 
123
  import requests
124
  from PIL import Image
125
 
126
+ conversation = [
127
+ {
128
+ "role": "user",
129
+ "content": [
130
+ {"type": "text", "text": "What are these?"},
131
+ {"type": "image"},
132
+ ],
133
+ },
134
+ ]
135
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
136
 
137
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
138
  raw_image = Image.open(requests.get(image_file, stream=True).raw)
139
  inputs_image = processor(prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
140
 
 
151
  {
152
  "role": "user",
153
  "content": [
154
+ {"type": "text", "text": "What's the content of the image>"},
155
  {"type": "image"},
156
  ],
157
  }
 
165
  ],
166
  },
167
  ]
168
+ prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
169
+ prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
170
 
171
  s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
172