ybelkada commited on
Commit
cd0766f
1 Parent(s): d2b60e4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: image-to-text
5
+ inference: false
6
+ arxiv: 2304.08485
7
+ ---
8
+ # LLaVA Model Card
9
+
10
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
11
+
12
+ Below is the model card of Llava model 13b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
13
+
14
+ ## Model details
15
+
16
+ **Model type:**
17
+ LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
18
+ It is an auto-regressive language model, based on the transformer architecture.
19
+
20
+ **Model date:**
21
+ LLaVA-v1.5-13B was trained in September 2023.
22
+
23
+ **Paper or resources for more information:**
24
+ https://llava-vl.github.io/
25
+
26
+ ## How to use the model
27
+
28
+ First, make sure to have `transformers >= 4.35.3`.
29
+ The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
30
+
31
+ ### Using `pipeline`:
32
+
33
+ Below we used [`"llava-hf/bakLlava-v1-hf"`](https://huggingface.co/llava-hf/bakLlava-v1-hf) checkpoint.
34
+
35
+ ```python
36
+ from transformers import pipeline
37
+ from PIL import Image
38
+ import request
39
+
40
+ model_id = "llava-hf/bakLlava-v1-hf"
41
+ pipe = pipeline("image-to-text", model=model_id)
42
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
43
+
44
+ image = Image.open(requests.get(url, stream=True).raw)
45
+ prompt = "<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
46
+
47
+ outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
48
+ print(outputs)
49
+ >>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
50
+ ```
51
+
52
+ ### Using pure `transformers`:
53
+
54
+ Below is an example script to run generation in `float16` precision on a GPU device:
55
+
56
+ ```python
57
+ import requests
58
+ from PIL import Image
59
+
60
+ import torch
61
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
62
+
63
+ model_id = "llava-hf/llava-1.5-7b-hf"
64
+
65
+ prompt = "<image> \nUSER: What are these?\nASSISTANT:"
66
+ image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
67
+
68
+ model = LlavaForConditionalGeneration.from_pretrained(
69
+ model_id,
70
+ torch_dtype=torch.float16,
71
+ low_cpu_mem_usage=True,
72
+ ).to(0)
73
+
74
+
75
+ raw_image = Image.open(requests.get(image_file, stream=True).raw)
76
+ inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
77
+
78
+ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
79
+ print(processor.decode(output[0][2:], skip_special_tokens=True))
80
+ ```
81
+
82
+ ### Model optimization
83
+
84
+ #### 4-bit quantization through `bitsandbytes` library
85
+
86
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
87
+
88
+ ```diff
89
+ model = LlavaForConditionalGeneration.from_pretrained(
90
+ model_id,
91
+ torch_dtype=torch.float16,
92
+ low_cpu_mem_usage=True,
93
+ + load_in_4bit=True
94
+ )
95
+ ```
96
+
97
+ #### Use Flash-Attention 2 to further speed-up generation
98
+
99
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
100
+
101
+ ```diff
102
+ model = LlavaForConditionalGeneration.from_pretrained(
103
+ model_id,
104
+ torch_dtype=torch.float16,
105
+ low_cpu_mem_usage=True,
106
+ + use_flash_attention_2=True
107
+ ).to(0)
108
+ ```
109
+
110
+ ## License
111
+ Llama 2 is licensed under the LLAMA 2 Community License,
112
+ Copyright (c) Meta Platforms, Inc. All Rights Reserved.