Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,6 @@ tags:
|
|
3 |
- vision
|
4 |
- image-text-to-text
|
5 |
---
|
6 |
-
NOTE: this model can only be used once https://github.com/huggingface/transformers/pull/29012 is merged
|
7 |
|
8 |
# LLaVa-Next, leveraging [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as LLM
|
9 |
|
@@ -13,8 +12,12 @@ Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this mo
|
|
13 |
|
14 |
## Model description
|
15 |
|
16 |
-
LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases.
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
|
19 |
|
20 |
## Intended uses & limitations
|
@@ -24,7 +27,34 @@ other versions on a task that interests you.
|
|
24 |
|
25 |
### How to use
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
### BibTeX entry and citation info
|
30 |
|
|
|
3 |
- vision
|
4 |
- image-text-to-text
|
5 |
---
|
|
|
6 |
|
7 |
# LLaVa-Next, leveraging [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as LLM
|
8 |
|
|
|
12 |
|
13 |
## Model description
|
14 |
|
15 |
+
LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA 1.6 improves on LLaVA 1.5 BY:
|
16 |
+
- Using [Mistral-7B](https://mistral.ai/news/announcing-mistral-7b/) (for this checkpoint) and [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) which has better commercial licenses,
|
17 |
+
and bilingual support
|
18 |
+
- More diverse and high quality data mixture
|
19 |
+
- Dynamic high resolution
|
20 |
+
|
21 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
|
22 |
|
23 |
## Intended uses & limitations
|
|
|
27 |
|
28 |
### How to use
|
29 |
|
30 |
+
Here's the prompt template for this model:
|
31 |
+
```
|
32 |
+
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
|
33 |
+
```
|
34 |
+
You can load and use the model like following:
|
35 |
+
```python
|
36 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
37 |
+
import torch
|
38 |
+
from PIL import Image
|
39 |
+
import requests
|
40 |
+
|
41 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
42 |
+
|
43 |
+
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
44 |
+
model.to("cuda:0")
|
45 |
+
|
46 |
+
# prepare image and text prompt, using the appropriate prompt template
|
47 |
+
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
|
48 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
49 |
+
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
50 |
+
|
51 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
52 |
+
|
53 |
+
# autoregressively complete prompt
|
54 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
55 |
+
|
56 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
57 |
+
```
|
58 |
|
59 |
### BibTeX entry and citation info
|
60 |
|