Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ pipeline_tag: zero-shot-image-classification
|
|
8 |
license:
|
9 |
- apache-2.0
|
10 |
datasets:
|
11 |
-
-
|
12 |
language:
|
13 |
- ja
|
14 |
---
|
@@ -16,7 +16,7 @@ language:
|
|
16 |
|
17 |
# Model Details
|
18 |
|
19 |
-
|
20 |
|
21 |
The total number of parameters of this model is 467M.
|
22 |
|
@@ -32,8 +32,8 @@ $ pip install open_clip_torch
|
|
32 |
```python
|
33 |
import open_clip
|
34 |
|
35 |
-
model, preprocess = open_clip.create_model_from_pretrained('hf-hub:
|
36 |
-
tokenizer = open_clip.get_tokenizer('hf-hub:
|
37 |
|
38 |
import torch
|
39 |
from PIL import Image
|
@@ -70,24 +70,47 @@ Reference:
|
|
70 |
|
71 |
## Training Data
|
72 |
|
73 |
-
|
74 |
-
The translation was performed using gemma-2-9b-it.
|
75 |
Due to a 70% success rate in image downloads, the dataset size was 1.45 billion samples, and we processed it over 9 epochs (13 billion samples in total).
|
76 |
|
77 |
# Evaluation
|
78 |
|
79 |
Evaluation Code: https://github.com/llm-jp/clip-eval
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# LICENSE
|
84 |
[The Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
# Citation
|
89 |
|
90 |
Bibtex:
|
91 |
```
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
```
|
|
|
8 |
license:
|
9 |
- apache-2.0
|
10 |
datasets:
|
11 |
+
- llm-jp/relaion2B-en-research-safe-japanese-translation
|
12 |
language:
|
13 |
- ja
|
14 |
---
|
|
|
16 |
|
17 |
# Model Details
|
18 |
|
19 |
+
Japanese CLIP model trained with [OpenCLIP](https://github.com/mlfoundations/open_clip) on [relaion2B-en-research-safe-japanese-translation](https://huggingface.co/datasets/llm-jp/relaion2B-en-research-safe-japanese-translation), a Japanese translation of the English subset of ReLAION-5B (https://huggingface.co/datasets/laion/relaion2B-en-research-safe), translated by [gemma-2-9b-it](https://huggingface.co/datasets/laion/relaion2B-en-research-safe).
|
20 |
|
21 |
The total number of parameters of this model is 467M.
|
22 |
|
|
|
32 |
```python
|
33 |
import open_clip
|
34 |
|
35 |
+
model, preprocess = open_clip.create_model_from_pretrained('hf-hub:llm-jp/llm-jp-clip-vit-large-patch14')
|
36 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:llm-jp/llm-jp-clip-vit-large-patch14')
|
37 |
|
38 |
import torch
|
39 |
from PIL import Image
|
|
|
70 |
|
71 |
## Training Data
|
72 |
|
73 |
+
This model is trained on [relaion2B-en-research-safe-japanese-translation](https://huggingface.co/datasets/llm-jp/relaion2B-en-research-safe-japanese-translation).
|
|
|
74 |
Due to a 70% success rate in image downloads, the dataset size was 1.45 billion samples, and we processed it over 9 epochs (13 billion samples in total).
|
75 |
|
76 |
# Evaluation
|
77 |
|
78 |
Evaluation Code: https://github.com/llm-jp/clip-eval
|
79 |
|
80 |
+
**Table:** Performance of each model in zero-shot image classification and image-text retrieval tasks. **Bold** indicates first place, and _underline_ indicates second place.
|
81 |
+
|
82 |
+
|
83 |
+
| Model | Params (M) | ImageNet | Recruit | CIFAR10 | CIFAR100 | Food101 | Caltech101 | XM3600 I → T | XM3600 T → I | Avg. |
|
84 |
+
|-----------------------------|-------------|----------|---------|---------|----------|---------|------------|-------------|-------------|------|
|
85 |
+
| **Japanese CLIP** | | | | | | | | | | |
|
86 |
+
| [Rinna ViT-B/16](https://huggingface.co/rinna/japanese-clip-vit-b-16) | 196 | 50.6 | 39.9 | 90.7 | 64.0 | 53.2 | 84.6 | 53.8 | 54.0 | 61.4 |
|
87 |
+
| [Rinna ViT-B/16 cloob](https://huggingface.co/rinna/japanese-cloob-vit-b-16) | 196 | 54.6 | 41.6 | 88.2 | 60.3 | 57.2 | 80.2 | 53.4 | 53.4 | 61.1 |
|
88 |
+
| [LY ViT-B/16](https://huggingface.co/line-corporation/clip-japanese-base) | 196 | 52.0 | **83.8** | 96.3 | 76.7 | 73.9 | **88.4** | **76.9** | **78.0** | **78.3** |
|
89 |
+
| [**llm-jp-ViT-B/16**](https://huggingface.co/llm-jp/llm-jp-clip-vit-base-patch16) | 248 | 54.2 | 59.4 | 91.8 | 69.2 | _82.2_ | 85.6 | 73.6 | 72.7 | 73.6 |
|
90 |
+
| [StabilityAI ViT-L/16](https://huggingface.co/stabilityai/japanese-stable-clip-vit-l-16) | 414 | **62.4** | 70.5 | _97.6_ | **84.1** | 74.0 | 86.7 | 67.3 | 66.0 | 76.1 |
|
91 |
+
| [**llm-jp-ViT-L/14**](https://huggingface.co/llm-jp/llm-jp-clip-vit-large-patch14) | 467 | _59.5_ | 62.9 | 96.4 | 77.0 | **88.2** | _87.8_ | 74.1 | _74.1_ | _77.5_ |
|
92 |
+
| **Multilingual CLIP** | | | | | | | | | | |
|
93 |
+
| [SigLIP B/16-256 multi](https://huggingface.co/google/siglip-base-patch16-256-multilingual) | 370 | 51.9 | 71.2 | 92.4 | 65.8 | 78.6 | 85.6 | 45.9 | 43.0 | 66.8 |
|
94 |
+
| [jina-clip-v2](https://huggingface.co/jinaai/jina-clip-v2) | 865 | 35.8 | 48.1 | 95.1 | 58.3 | 52.0 | 69.4 | 67.3 | 66.4 | 61.6 |
|
95 |
+
| [LAION ViT-H/14 multi](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) | 1193 | 53.0 | _74.5_ | **97.9** | _78.4_ | 74.3 | 85.1 | _75.0_ | 72.0 | 76.3 |
|
96 |
+
|
97 |
|
98 |
# LICENSE
|
99 |
[The Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
100 |
|
101 |
+
|
102 |
+
Please refer to the [Gemma Terms of Use](https://ai.google.dev/gemma/terms), as the training data was translated using gemma-2-9b-it. We utilizes Gemma solely for translation purposes. According to the definition of "Model Derivatives" in Section 1.1(e), our model does not fall under the category of a "model in order to cause that model to perform similarly to Gemma." Therefore, we have concluded that it is not necessary to inherit the Gemma license.
|
103 |
|
104 |
# Citation
|
105 |
|
106 |
Bibtex:
|
107 |
```
|
108 |
+
@inproceedings{sugiura2025clip,
|
109 |
+
author = {杉浦 一瑳 and 栗田 修平 and 小田 悠介 and 河原大輔 and 岡崎 直観},
|
110 |
+
month = mar,
|
111 |
+
series = {言語処理学会第31回年次大会 (NLP2025)},
|
112 |
+
title = {オープンLLMによる翻訳を活用した日本語 CLIP の開発},
|
113 |
+
year = {2025}
|
114 |
+
}
|
115 |
+
|
116 |
```
|