w95 commited on
Commit
5a502c2
·
1 Parent(s): 4bd682d
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ember-v1
2
+
3
+ <p align="center">
4
+ <img src="https://console.llmrails.com/assets/img/logo-black.svg" width="150px">
5
+ </p>
6
+
7
+ This model is trained on a large-scale corpus of relevance text pairs, covering a wide range of domains like financial, scientific, medical, legal and others. While training we used some technics from Retromae and SetFit papers.
8
+
9
+ We are also providing it on our own platform as API as a service, feel free to signup: [LLMRails](https://llmrails.com/?ref=ember-v1).
10
+
11
+ ### Plans
12
+ - Paper will be published soon
13
+ - v2 is on it's way with 4k maximum sequence length
14
+
15
+ ## Usage
16
+ Use with API request:
17
+ ```bash
18
+ curl --location 'https://api.llmrails.com/v1/embeddings' \
19
+ --header 'X-API-KEY: {token}' \
20
+ --header 'Content-Type: application/json' \
21
+ --data '{
22
+ "input": ["This is an example sentence"],
23
+ "model":"embedding-english-v1" # equals to ember-v1
24
+ }'
25
+ ```
26
+ API docs: https://docs.llmrails.com/embedding/embed-text
27
+ Langchain plugin: https://python.langchain.com/docs/integrations/text_embedding/llm_rails
28
+
29
+ Use with transformers:
30
+ ```python
31
+ import torch.nn.functional as F
32
+ from torch import Tensor
33
+ from transformers import AutoTokenizer, AutoModel
34
+
35
+ def average_pool(last_hidden_states: Tensor,
36
+ attention_mask: Tensor) -> Tensor:
37
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
38
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
39
+
40
+ input_texts = [
41
+ "This is an example sentence",
42
+ "Each sentence is converted"
43
+ ]
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained("llmrails/ember-v1")
46
+ model = AutoModel.from_pretrained("llmrails/ember-v1")
47
+
48
+ # Tokenize the input texts
49
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
50
+
51
+ outputs = model(**batch_dict)
52
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
53
+
54
+ # (Optionally) normalize embeddings
55
+ embeddings = F.normalize(embeddings, p=2, dim=1)
56
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
57
+ print(scores.tolist())
58
+ ```
59
+
60
+ Use with sentence-transformers:
61
+ ```python
62
+ from sentence_transformers import SentenceTransformer
63
+ from sentence_transformers.util import cos_sim
64
+
65
+ sentences = [
66
+ "This is an example sentence",
67
+ "Each sentence is converted"
68
+ ]
69
+
70
+ model = SentenceTransformer('llmrails/ember-v1')
71
+ embeddings = model.encode(sentences)
72
+ print(cos_sim(embeddings[0], embeddings[1]))
73
+ ```
74
+
75
+ ## Massive Text Embedding Benchmark (MTEB) Evaluation
76
+ Our model achieve state-of-the-art performance on [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
77
+
78
+ | Model Name | Dimension | Sequence Length | Average (56) |
79
+ |:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
80
+ | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | 64.23 |
81
+ | [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 |
82
+ | [ember-v1](https://huggingface.co/llmrails/emmbedding-en-v1) | 1024 | 512 | **63.54** |
83
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings/types-of-embedding-models) | 1536 | 8191 | 60.99 |
84
+
85
+ ### Limitation
86
+
87
+ This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/llmrails_luna-v1/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.33.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63cd396b456f848b7e643f3d6a703a01c7b08337519ee1bf5accbc12c8ea1998
3
+ size 1340699369
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff