File size: 1,177 Bytes
0e98d7e
 
 
f05dfcc
 
09c454b
0e98d7e
 
09c454b
0e98d7e
cb20c1e
0e98d7e
cb20c1e
0e98d7e
 
 
 
09c454b
 
2d0fb3b
09c454b
0e98d7e
 
2d0fb3b
09c454b
0e98d7e
2d0fb3b
 
 
 
0e98d7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
---
license: apache-2.0
inference: false 
base_model: llmware/bling-phi-3
base_model_relation: quantized
tags: [green, llmware-rag, p3, ov]
---

# bling-phi-3-ov

**bling-phi-3-ov** is a fast and accurate fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.    

This model is one of the most accurate in the BLING/DRAGON model series, which is especially notable given the relatively small size and is ideal for use on AI PCs and local inferencing.  

### Model Description

- **Developed by:** llmware  
- **Model type:** phi-3
- **Parameters:** 3.8 billion  
- **Quantization:** int4  
- **Model Parent:** [llmware/bling-phi-3](https://www.huggingface.co/llmware/bling-phi-3)    
- **Language(s) (NLP):** English  
- **License:** Apache 2.0  
- **Uses:** Fact-based question-answering, RAG  
- **RAG Benchmark Accuracy Score:** 99.5

    
## Model Card Contact  
[llmware on github](https://www.github.com/llmware-ai/llmware)  
[llmware on hf](https://www.huggingface.co/llmware)  
[llmware website](https://www.llmware.ai)