File size: 1,177 Bytes
0e98d7e f05dfcc 09c454b 0e98d7e 09c454b 0e98d7e cb20c1e 0e98d7e cb20c1e 0e98d7e 09c454b 2d0fb3b 09c454b 0e98d7e 2d0fb3b 09c454b 0e98d7e 2d0fb3b 0e98d7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
license: apache-2.0
inference: false
base_model: llmware/bling-phi-3
base_model_relation: quantized
tags: [green, llmware-rag, p3, ov]
---
# bling-phi-3-ov
**bling-phi-3-ov** is a fast and accurate fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
This model is one of the most accurate in the BLING/DRAGON model series, which is especially notable given the relatively small size and is ideal for use on AI PCs and local inferencing.
### Model Description
- **Developed by:** llmware
- **Model type:** phi-3
- **Parameters:** 3.8 billion
- **Quantization:** int4
- **Model Parent:** [llmware/bling-phi-3](https://www.huggingface.co/llmware/bling-phi-3)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Uses:** Fact-based question-answering, RAG
- **RAG Benchmark Accuracy Score:** 99.5
## Model Card Contact
[llmware on github](https://www.github.com/llmware-ai/llmware)
[llmware on hf](https://www.huggingface.co/llmware)
[llmware website](https://www.llmware.ai)
|