doberst commited on
Commit
0642c11
·
verified ·
1 Parent(s): 60ab8ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -34
README.md CHANGED
@@ -6,51 +6,29 @@ tags: [green, llmware-rag, p1, ov]
6
 
7
  # bling-tiny-llama-ov
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
- **bling-tiny-llama-ov** is an OpenVino int4 quantized version of BLING Tiny-Llama 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
-
13
- [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
14
-
15
- Get started right away
16
-
17
- 1. Install dependencies
18
-
19
- ```
20
- pip3 install llmware
21
- pip3 install openvino
22
- pip3 install openvino_genai
23
- ```
24
-
25
- 2. Hello World
26
-
27
- ```
28
- from llmware.models import ModelCatalog
29
- model = ModelCatalog().load_model("bling-tiny-llama-ov")
30
- response = model.inference("The stock price is $45.\nWhat is the stock price?")
31
- print("response: ", response)
32
- ```
33
-
34
- Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
35
-
36
- Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmware.ai)
37
 
 
38
 
39
  ### Model Description
40
 
41
  - **Developed by:** llmware
42
  - **Model type:** tinyllama
43
- - **Parameters:** 1.1 billion
 
44
  - **Model Parent:** llmware/bling-tiny-llama-v0
45
  - **Language(s) (NLP):** English
46
  - **License:** Apache 2.0
47
- - **Uses:** Fact-based question-answering
48
  - **RAG Benchmark Accuracy Score:** 86.5
49
- - **Quantization:** int4
50
-
51
 
52
- ## Model Card Contact
 
 
 
53
 
54
- [llmware on hf](https://www.huggingface.co/llmware)
55
 
 
 
 
56
  [llmware website](https://www.llmware.ai)
 
6
 
7
  # bling-tiny-llama-ov
8
 
9
+ **bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, optimized for complex business documents, and quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the series, e.g., llmware/bling-phi-3-ov.
12
 
13
  ### Model Description
14
 
15
  - **Developed by:** llmware
16
  - **Model type:** tinyllama
17
+ - **Parameters:** 1.1 billion
18
+ - **Quantization:** int4
19
  - **Model Parent:** llmware/bling-tiny-llama-v0
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
+ - **Uses:** Fact-based question-answering, RAG
23
  - **RAG Benchmark Accuracy Score:** 86.5
 
 
24
 
25
+
26
+ Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
27
+
28
+ Looking for AI PC solutions, contact us at [llmware](https://www.llmware.ai)
29
 
 
30
 
31
+ ## Model Card Contact
32
+
33
+ [llmware on hf](https://www.huggingface.co/llmware)
34
  [llmware website](https://www.llmware.ai)