File size: 4,544 Bytes
ebdf4a1 52a1c58 c6eee92 52a1c58 5f1cc89 52a1c58 9be3f83 0ff3b5b 1ee3961 52a1c58 1ee3961 52a1c58 1ee3961 52a1c58 c6eee92 52a1c58 c6eee92 6af247c 52a1c58 43d34b6 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 52a1c58 c6eee92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
dragon-falcon-7b-v0 part of the dRAGon ("Delivering RAG On ...") model series, RAG-instruct trained on top of a Falcon-7B base model.
DRAGON models have been fine-tuned with the specific objective of fact-based question-answering over complex business and legal documents with an emphasis on reducing hallucinations and providing short, clear answers for workflow automation.
### Benchmark Tests
Evaluated against the benchmark test: [RAG-Instruct-Benchmark-Tester](https://www.huggingface.co/datasets/llmware/rag_instruct_benchmark_tester)
Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.
--**Accuracy Score**: **94** correct out of 100
--Not Found Classification: 75.0%
--Boolean: 81.25%
--Math/Logic: 66.75%
--Complex Questions (1-5): 3 (Medium)
--Summarization Quality (1-5): 3 (Coherent, extractive)
--Hallucinations: No hallucinations observed in test runs.
For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** llmware
- **Model type:** Falcon
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model:** Falcon-7B-Base
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
DRAGON is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
legal and regulatory industries with complex information sources.
DRAGON models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types
without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.
## How to Get Started with the Model
The fastest way to get started with dRAGon is through direct import in transformers:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("dragon-falcon-7b-v0")
model = AutoModelForCausalLM.from_pretrained("dragon-falcon-7b-v0")
Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The **generation_test_llmware_script.py** includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.
The BLING model was fine-tuned with a simple "\<human> and \<bot> wrapper", so to get the best results, wrap inference entries as:
full_prompt = "\<human>\: " + my_prompt + "\n" + "\<bot>\:"
The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:
1. Text Passage Context, and
2. Specific question or instruction based on the text passage
To get the best results, package "my_prompt" as follows:
my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
If you are using a HuggingFace generation script:
# prepare prompt packaging used in fine-tuning process
new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
inputs = tokenizer(new_prompt, return_tensors="pt")
start_of_output = len(inputs.input_ids[0])
# temperature: set at 0.3 for consistency of output
# max_new_tokens: set at 100 - may prematurely stop a few of the summaries
outputs = model.generate(
inputs.input_ids.to(device),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.3,
max_new_tokens=100,
)
output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
## Model Card Contact
Darren Oberst & llmware team
|