doberst commited on
Commit
039ab10
·
verified ·
1 Parent(s): b0fc0c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -7
README.md CHANGED
@@ -6,23 +6,20 @@ license: llama2
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
- **dragon-llama-qa-tool** is a quantized version of DRAGON Llama 7B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
  [DRAGON LLama 7B](https://huggingface.co/llmware/dragon-llama-7b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
  We are providing as a separate repository that can be pulled directly:
14
 
15
- from huggingface_hub import snapshot_download
16
-
17
  snapshot_download("llmware/dragon-llama-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
18
 
19
 
20
  Load in your favorite GGUF inference engine, or try with llmware as follows:
21
 
22
- from llmware.models import ModelCatalog
23
-
24
- model = ModelCatalog().load_model("llmware/dragon-llama-qa-tool")
25
-
26
  response = model.inference(query, text_sample)
27
 
28
  Note: please review the config.json file in the repository for prompt wrapping information, details on the model, and full test set.
 
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
+ **dragon-llama-answer-tool** is a quantized version of DRAGON Llama 7B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
  [DRAGON LLama 7B](https://huggingface.co/llmware/dragon-llama-7b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
 
13
  We are providing as a separate repository that can be pulled directly:
14
 
15
+ from huggingface_hub import snapshot_download
 
16
  snapshot_download("llmware/dragon-llama-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
17
 
18
 
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
+ from llmware.models import ModelCatalog
22
+ model = ModelCatalog().load_model("llmware/dragon-llama-answer-tool")
 
 
23
  response = model.inference(query, text_sample)
24
 
25
  Note: please review the config.json file in the repository for prompt wrapping information, details on the model, and full test set.