doberst commited on
Commit
8adda4d
·
verified ·
1 Parent(s): d2a64e1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -1
README.md CHANGED
@@ -1,3 +1,62 @@
1
  ---
2
- license: llama2
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  ---
4
+
5
+ # Model Card for Model ID
6
+
7
+ <!-- Provide a quick summary of what the model is/does. -->
8
+
9
+ **slim-sentiment-tool** is part of the SLIM ("Structured Language Instruction Model") model series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
10
+
11
+ slim-sentiment-tool is a 4_K_M quantized GGUF version of slim-sentiment-tool, providing a fast, small inference implementation.
12
+
13
+ Load in your favorite GGUF inference engine, or try with llmware as follows:
14
+
15
+ from llmware.models import ModelCatalog
16
+
17
+ sentiment_tool = ModelCatalog().load_model("llmware/slim-sentiment-tool")
18
+ response = sentiment_tool.function_call(text_sample, params=["sentiment"], function="classify")
19
+
20
+ Slim models can also be loaded even more simply as part of LLMfx calls:
21
+
22
+ from llmware.agents import LLMfx
23
+
24
+ llm_fx = LLMfx()
25
+ llm_fx.load_tool("sentiment")
26
+ response = llm_fx.sentiment(text)
27
+
28
+
29
+ ### Model Description
30
+
31
+ <!-- Provide a longer summary of what this model is. -->
32
+
33
+ - **Developed by:** llmware
34
+ - **Model type:** GGUF
35
+ - **Language(s) (NLP):** English
36
+ - **License:** Apache 2.0
37
+ - **Quantized from model:** llmware/slim-sentiment (finetuned tiny llama)
38
+
39
+ ## Uses
40
+
41
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
+
43
+ The intended use of SLIM models is to re-imagine traditional 'hard-coded' classifiers through the use of function calls.
44
+
45
+ Example:
46
+
47
+ text = "The stock market declined yesterday as investors worried increasingly about the slowing economy."
48
+
49
+ model generation - {"sentiment": ["negative"]}
50
+
51
+ keys = "sentiment"
52
+
53
+ All of the SLIM models use a novel prompt instruction structured as follows:
54
+
55
+ "<human> " + text + "<classify> " + keys + "</classify>" + "/n<bot>: "
56
+
57
+
58
+ ## Model Card Contact
59
+
60
+ Darren Oberst & llmware team
61
+
62
+