doberst commited on
Commit
00205b6
1 Parent(s): 9c9f36a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -7
README.md CHANGED
@@ -8,30 +8,29 @@ tags: [green, llmware-rag, p7,ov]
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- **dragon-qwen-7b-ov** is an OpenVino int4 quantized version of dragon-qwen-7b, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
  [**dragon-qwen-7b**](https://huggingface.co/llmware/dragon-qwen-7b) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
- Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
-
17
- Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmware.ai)
18
-
19
 
20
  ### Model Description
21
 
22
  - **Developed by:** llmware
23
  - **Model type:** qwen2-7b
24
- - **Parameters:** 7 billion
25
  - **Model Parent:** llmware/dragon-qwen-7b
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
  - **Uses:** Fact-based question-answering
29
- - **RAG Benchmark Accuracy Score:** 99.5
30
  - **Quantization:** int4
31
 
32
 
33
  ## Model Card Contact
34
 
 
 
35
  [llmware on hf](https://www.huggingface.co/llmware)
36
 
37
  [llmware website](https://www.llmware.ai)
 
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **dragon-qwen-7b-ov** is an OpenVino int4 quantized version of dragon-qwen-7b, providing a very fast inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
  [**dragon-qwen-7b**](https://huggingface.co/llmware/dragon-qwen-7b) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
+ This is a very accurate model and a new release based on Qwen2.
 
 
 
16
 
17
  ### Model Description
18
 
19
  - **Developed by:** llmware
20
  - **Model type:** qwen2-7b
21
+ - **Parameters:** 7 billion
22
  - **Model Parent:** llmware/dragon-qwen-7b
23
  - **Language(s) (NLP):** English
24
  - **License:** Apache 2.0
25
  - **Uses:** Fact-based question-answering
26
+ - **RAG Benchmark Accuracy Score:** 99.0
27
  - **Quantization:** int4
28
 
29
 
30
  ## Model Card Contact
31
 
32
+ [llmware on github](https://www.github.com/llmware-ai/llmware)
33
+
34
  [llmware on hf](https://www.huggingface.co/llmware)
35
 
36
  [llmware website](https://www.llmware.ai)