--- license: apache-2.0 inference: false --- # DRAGON-YI-9B-GGUF **dragon-yi-9b-gguf** is a fact-based question-answering model, optimized for complex business documents, finetuned on top of 01-ai/yi-v1.5-9b base and quantizedwith 4_K_M GGUF quantization, providing an inference implementation for use on CPUs. ## Benchmark Tests Evaluated against the benchmark test: RAG-Instruct-Benchmark-Tester 1 Test Run (temperature=0.0, sample=False) with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations. --Accuracy Score: **98.0** correct out of 100 --Not Found Classification: 90.0% --Boolean: 97.5% --Math/Logic: 95% --Complex Questions (1-5): 5 (Very Strong) --Summarization Quality (1-5): 4 (Above Average) --Hallucinations: No hallucinations observed in test runs. For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo). To pull the model via API: from huggingface_hub import snapshot_download snapshot_download("llmware/dragon-yi-9b-gguf", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False) Load in your favorite GGUF inference engine, or try with llmware as follows: from llmware.models import ModelCatalog model = ModelCatalog().load_model("dragon-yi-9b-gguf") response = model.inference(query, add_context=text_sample) Note: please review [**config.json**](https://huggingface.co/llmware/dragon-yi-9b-gguf/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set. ### Model Description - **Developed by:** llmware - **Model type:** GGUF - **Language(s) (NLP):** English - **License:** Apache 2.0 ## Model Card Contact Darren Oberst & llmware team