doberst commited on
Commit
23f0c0e
·
verified ·
1 Parent(s): 14f1114

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -4,13 +4,13 @@ inference: false
4
  tags: [green, p1, llmware-chat, ov]
5
  ---
6
 
7
- # qwen2-0.5b-chat-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- **bling-tiny-llama-ov** is an OpenVino int4 quantized version of BLING Tiny-Llama 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
- [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
@@ -19,14 +19,14 @@ Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmwa
19
 
20
  ### Model Description
21
 
22
- - **Developed by:** llmware
23
- - **Model type:** tinyllama
24
- - **Parameters:** 1.1 billion
25
- - **Model Parent:** llmware/bling-tiny-llama-v0
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
- - **Uses:** Fact-based question-answering
29
- - **RAG Benchmark Accuracy Score:** 86.5
30
  - **Quantization:** int4
31
 
32
 
 
4
  tags: [green, p1, llmware-chat, ov]
5
  ---
6
 
7
+ # qwen-2-1.5b-instruct-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **qwen2-1.5b-instruct-ov** is an OpenVino int4 quantized version of Qwen2 Instruct 1.5B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
+ [**qwen2-1.5b-instruct**](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
 
19
 
20
  ### Model Description
21
 
22
+ - **Developed by:** qwen
23
+ - **Model type:** qwen2-1.5b
24
+ - **Parameters:** 1.5 billion
25
+ - **Model Parent:** Qwen/Qwen2-1.5B-Instruct
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
+ - **Uses:** General purpose
29
+ - **RAG Benchmark Accuracy Score:** NA
30
  - **Quantization:** int4
31
 
32