File size: 3,096 Bytes
20ae344 ab571b8 20ae344 b2a2fc5 9e24246 b2a2fc5 47fd96f b2a2fc5 9426e44 b2a2fc5 e063483 b2a2fc5 9e24246 b2a2fc5 47fd96f eb4cdff b2a2fc5 ab571b8 b2a2fc5 ab571b8 eb4cdff ab571b8 b2a2fc5 ab571b8 b2a2fc5 eb4cdff b2a2fc5 ab571b8 eb4cdff b2a2fc5 eb4cdff ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 eb4cdff b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 ab571b8 b2a2fc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
inference: false
---
# SLIM-NER
<!-- Provide a quick summary of what the model is/does. -->
**slim-ner** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of 1b parameter small, specialized decoder-based models, fine-tuned for function-calling.
slim-ner has been fine-tuned for **named entity extraction** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
`{"people": ["..."], "organization":["..."], "location": ["..."]}`
SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
SLIM models can be used 'out of the box' for rapid prototyping in most general purpose use cases, and are designed to serve as a solid base that can be easily fine-tuned and adapted for specialized production use cases.
Each slim model has a 'quantized tool' version, e.g., [**'slim-ner-tool'**](https://huggingface.co/llmware/slim-ner-tool).
## Prompt format:
`function = "classify"`
`params = "people, organization, location"`
`prompt = "<human> " + {text} + "\n" + `
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
<details>
<summary>Transformers Script </summary>
model = AutoModelForCausalLM.from_pretrained("llmware/slim-ner")
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-ner")
function = "classify"
params = "people, organization, location"
text = "Yesterday, in Redmond, Satya Nadella announced that Microsoft would be launching a new AI strategy."
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
inputs = tokenizer(prompt, return_tensors="pt")
start_of_input = len(inputs.input_ids[0])
outputs = model.generate(
inputs.input_ids.to('cpu'),
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.3,
max_new_tokens=100
)
output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)
print("output only: ", output_only)
# here's the fun part
try:
output_only = ast.literal_eval(llm_string_output)
print("success - converted to python dictionary automatically")
except:
print("fail - could not convert to python dictionary automatically - ", llm_string_output)
</details>
<details>
<summary>Using as Function Call in LLMWare</summary>
from llmware.models import ModelCatalog
slim_model = ModelCatalog().load_model("llmware/slim-ner")
response = slim_model.function_call(text,params=["people","organization","location"], function="classify")
print("llmware - llm_response: ", response)
</details>
## Model Card Contact
Darren Oberst & llmware team
[Join us on Discord](https://discord.gg/MhZn5Nc39h)
|