doberst commited on
Commit
8506912
1 Parent(s): ff54d4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -16
README.md CHANGED
@@ -4,11 +4,11 @@ inference: false
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
- # slim-extract-tiny-ov
8
 
9
- **slim-extract-tiny-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
10
 
11
- This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
 
14
  ### Model Description
@@ -16,23 +16,12 @@ This is an OpenVino int4 quantized version of slim-extract-tiny, providing a ver
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
- - **Model Parent:** llmware/slim-extract-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
- - **Uses:** Extraction of values from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
-
26
- ### Example Usage
27
-
28
- from llmware.models import ModelCatalog
29
-
30
- text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
31
- model = ModelCatalog().load_model("slim-extract-tiny-ov")
32
- llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
33
-
34
- Output: `llm_response = {"revenue": [$125 million"]}`
35
-
36
 
37
  ## Model Card Contact
38
 
 
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
+ # slim-ratings-ov
8
 
9
+ **slim-ratings-ov** is a specialized function calling model that generates a dictionary with a 'stars' rating characterizing the sentiment/positivity of a text passage between 1 (poor) and 5 (very positive).
10
 
11
+ This is an OpenVino int4 quantized version of slim-ratings, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
 
14
  ### Model Description
 
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
+ - **Model Parent:** llmware/slim-ratings
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
+ - **Uses:** Sentiment 'stars' rating score of 1 (low) - 5 (high)
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Model Card Contact
27