Update README.md
Browse files
README.md
CHANGED
@@ -14,23 +14,26 @@ slim-sentiment has been fine-tuned for **sentiment analysis** function calls, ge
|
|
14 |
`{"sentiment": ["positive"]}`
|
15 |
|
16 |
|
17 |
-
SLIM models
|
18 |
|
19 |
Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
|
20 |
|
21 |
|
22 |
## Prompt format:
|
23 |
|
|
|
|
|
|
|
24 |
`"<human> " + {text} + "\n" + `
|
25 |
|
26 |
-
`"<{function}> " + {
|
27 |
|
28 |
`+ "/n<bot>:" `
|
29 |
|
30 |
|
31 |
|
32 |
<details>
|
33 |
-
<summary
|
34 |
|
35 |
model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment")
|
36 |
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment")
|
@@ -72,7 +75,7 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'*
|
|
72 |
|
73 |
|
74 |
|
75 |
-
<summary
|
76 |
|
77 |
from llmware.models import ModelCatalog
|
78 |
slim_model = ModelCatalog().load_model("llmware/slim-sentiment")
|
|
|
14 |
`{"sentiment": ["positive"]}`
|
15 |
|
16 |
|
17 |
+
SLIM models are designed to provide a flexible natural language generative model that can be used for decision gates and processing steps in a complex LLM-based automation workflow.
|
18 |
|
19 |
Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
|
20 |
|
21 |
|
22 |
## Prompt format:
|
23 |
|
24 |
+
`function = "classify"`
|
25 |
+
`params = "sentiment"`
|
26 |
+
|
27 |
`"<human> " + {text} + "\n" + `
|
28 |
|
29 |
+
`"<{function}> " + {params} + "</{function}>"`
|
30 |
|
31 |
`+ "/n<bot>:" `
|
32 |
|
33 |
|
34 |
|
35 |
<details>
|
36 |
+
<summary>Transformers Script </summary>
|
37 |
|
38 |
model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment")
|
39 |
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment")
|
|
|
75 |
|
76 |
|
77 |
|
78 |
+
<summary>Using as Function Call in LLMWare</summary>
|
79 |
|
80 |
from llmware.models import ModelCatalog
|
81 |
slim_model = ModelCatalog().load_model("llmware/slim-sentiment")
|