doberst commited on
Commit
7de927e
1 Parent(s): 2d732fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -15
README.md CHANGED
@@ -4,9 +4,9 @@ inference: false
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
- # slim-extract-tiny-ov
8
 
9
- **slim-extract-tiny-ov** is a specialized function calling model with a single mission to look for values in a text, based on an "extract" key that is passed as a parameter. No other instructions are required except to pass the context passage, and the target key, and the model will generate a python dictionary consisting of the extract key and a list of the values found in the text, including an 'empty list' if the text does not provide an answer for the value of the selected key.
10
 
11
  This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
@@ -16,23 +16,13 @@ This is an OpenVino int4 quantized version of slim-extract-tiny, providing a ver
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
- - **Model Parent:** llmware/slim-extract-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
- - **Uses:** Extraction of values from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
-
26
- ### Example Usage
27
-
28
- from llmware.models import ModelCatalog
29
-
30
- text_passage = "The company announced that for the current quarter the total revenue increased by 9% to $125 million."
31
- model = ModelCatalog().load_model("slim-extract-tiny-ov")
32
- llm_response = model.function_call(text_passage, function="extract", params=["revenue"])
33
-
34
- Output: `llm_response = {"revenue": [$125 million"]}`
35
-
36
 
37
  ## Model Card Contact
38
 
 
4
  tags: [green, p1, llmware-fx, ov, emerald]
5
  ---
6
 
7
+ # slim-summary-tiny-ov
8
 
9
+ **slim-summary-tiny-ov** is a specialized function calling model that summarizes a given text and generates as output a Python list of summary points.
10
 
11
  This is an OpenVino int4 quantized version of slim-extract-tiny, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
 
16
  - **Developed by:** llmware
17
  - **Model type:** tinyllama
18
  - **Parameters:** 1.1 billion
19
+ - **Model Parent:** llmware/slim-summary-tiny
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
+ - **Uses:** Summary bulletpoints extracted from complex business documents
23
  - **RAG Benchmark Accuracy Score:** NA
24
  - **Quantization:** int4
25
+
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Model Card Contact
28