speech-t5-tts-ov / openvino_vocoder.xml
doberst's picture
Upload 19 files
c2cb40e verified
<?xml version="1.0"?>
<net name="Model9" version="11">
<layers>
<layer id="0" name="spectrogram" type="Parameter" version="opset1">
<data shape="?,?,80" element_type="f32" />
<output>
<port id="0" precision="FP32" names="spectrogram">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="1" name="Constant_66593" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 80" offset="0" size="320" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="2" name="aten::sub/Subtract" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="39">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="3" name="Constant_66594" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 80" offset="320" size="320" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="4" name="aten::div/Divide" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>80</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="40,spectrogram_1">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
</output>
</layer>
<layer id="5" name="aten::transpose/Constant" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="640" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="aten::transpose/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>80</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="43,input.1">
<dim>-1</dim>
<dim>80</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="7" name="self.conv_pre.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 80, 7" offset="652" size="1146880" />
<output>
<port id="0" precision="FP32" names="self.conv_pre.weight">
<dim>512</dim>
<dim>80</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="8" name="__module.conv_pre/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>80</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>80</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="9" name="__module.conv_pre/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1" offset="1147532" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="10" name="__module.conv_pre/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="110,input.3">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="11" name="45" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="45" />
</output>
</layer>
<layer id="12" name="aten::leaky_relu/PRelu" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="46,input.5">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="13" name="self.upsampler.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 8" offset="1149584" size="4194304" />
<output>
<port id="0" precision="FP32" names="self.upsampler.0.weight">
<dim>512</dim>
<dim>256</dim>
<dim>8</dim>
</port>
</output>
</layer>
<layer id="14" name="__module.upsampler.0/aten::_convolution/ConvolutionBackpropData" type="ConvolutionBackpropData" version="opset1">
<data strides="4" dilations="1" pads_begin="2" pads_end="2" auto_pad="explicit" output_padding="0" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>512</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>8</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="15" name="__module.upsampler.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="5343888" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="16" name="__module.upsampler.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="123,input.7">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="17" name="130" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="130" />
</output>
</layer>
<layer id="18" name="__module.resblocks.0/aten::leaky_relu/PRelu" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="143,215,287,input.31,input.53,input.9">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="19" name="self.resblocks.0.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="5344912" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs1.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="20" name="__module.resblocks.0.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="21" name="__module.resblocks.0.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="6131344" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="22" name="__module.resblocks.0.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="150,input.11">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="23" name="__module.resblocks.0/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="151,input.13">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="24" name="self.resblocks.0.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="6132368" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs2.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="25" name="__module.resblocks.0.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="26" name="__module.resblocks.0.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="6918800" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="27" name="__module.resblocks.0.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="158,hidden_states.1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="28" name="__module.resblocks.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="159,input.15">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="29" name="__module.resblocks.0/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="160,input.17">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="30" name="self.resblocks.0.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="6919824" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs1.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="31" name="__module.resblocks.0.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="32" name="__module.resblocks.0.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="7706256" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="33" name="__module.resblocks.0.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="167,input.19">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="34" name="__module.resblocks.0/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="168,input.21">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="35" name="self.resblocks.0.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="7707280" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs2.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="36" name="__module.resblocks.0.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="37" name="__module.resblocks.0.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="8493712" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="38" name="__module.resblocks.0.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="175,hidden_states.3">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="39" name="__module.resblocks.0/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="176,input.23">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="40" name="__module.resblocks.0/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="177,input.25">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="41" name="self.resblocks.0.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="8494736" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs1.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="42" name="__module.resblocks.0.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="43" name="__module.resblocks.0.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="9281168" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="44" name="__module.resblocks.0.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="184,input.27">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="45" name="__module.resblocks.0/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="185,input.29">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="46" name="self.resblocks.0.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3" offset="9282192" size="786432" />
<output>
<port id="0" precision="FP32" names="self.resblocks.0.convs2.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="47" name="__module.resblocks.0.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="48" name="__module.resblocks.0.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="10068624" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="49" name="__module.resblocks.0.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="192,hidden_states.5">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="50" name="__module.resblocks.0/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="193_1">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="51" name="self.resblocks.1.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="10069648" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs1.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="52" name="__module.resblocks.1.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="53" name="__module.resblocks.1.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="11904656" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="54" name="__module.resblocks.1.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="222,input.33">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="55" name="202" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="202" />
</output>
</layer>
<layer id="56" name="__module.resblocks.1/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="223,input.35">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="57" name="self.resblocks.1.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="11905680" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs2.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="58" name="__module.resblocks.1.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="59" name="__module.resblocks.1.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="13740688" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="60" name="__module.resblocks.1.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="230,hidden_states.7">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="61" name="__module.resblocks.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="231,input.37">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="62" name="__module.resblocks.1/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="232,input.39">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="63" name="self.resblocks.1.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="13741712" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs1.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="64" name="__module.resblocks.1.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="9" pads_end="9" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="65" name="__module.resblocks.1.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="15576720" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="66" name="__module.resblocks.1.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="239,input.41">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="67" name="__module.resblocks.1/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="240,input.43">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="68" name="self.resblocks.1.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="15577744" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs2.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="69" name="__module.resblocks.1.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="70" name="__module.resblocks.1.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="17412752" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="71" name="__module.resblocks.1.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="247,hidden_states.9">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="72" name="__module.resblocks.1/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="248,input.45">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="73" name="__module.resblocks.1/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="249,input.47">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="74" name="self.resblocks.1.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="17413776" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs1.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="75" name="__module.resblocks.1.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="76" name="__module.resblocks.1.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="19248784" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="77" name="__module.resblocks.1.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="256,input.49">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="78" name="__module.resblocks.1/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="257,input.51">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="79" name="self.resblocks.1.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 7" offset="19249808" size="1835008" />
<output>
<port id="0" precision="FP32" names="self.resblocks.1.convs2.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="80" name="__module.resblocks.1.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="81" name="__module.resblocks.1.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="21084816" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="82" name="__module.resblocks.1.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="264,hidden_states.11">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="83" name="__module.resblocks.1/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="265">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="84" name="aten::add_/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="193_2">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="85" name="self.resblocks.2.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="21085840" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs1.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="86" name="__module.resblocks.2.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="87" name="__module.resblocks.2.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="23969424" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="88" name="__module.resblocks.2.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="294,input.55">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="89" name="274" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="274" />
</output>
</layer>
<layer id="90" name="__module.resblocks.2/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="295,input.57">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="91" name="self.resblocks.2.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="23970448" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs2.0.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="92" name="__module.resblocks.2.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="93" name="__module.resblocks.2.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="26854032" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="94" name="__module.resblocks.2.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="302,hidden_states.13">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="95" name="__module.resblocks.2/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="303,input.59">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="96" name="__module.resblocks.2/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="304,input.61">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="97" name="self.resblocks.2.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="26855056" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs1.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="98" name="__module.resblocks.2.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="99" name="__module.resblocks.2.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="29738640" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="100" name="__module.resblocks.2.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="311,input.63">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="101" name="__module.resblocks.2/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="312,input.65">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="102" name="self.resblocks.2.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="29739664" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs2.1.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="103" name="__module.resblocks.2.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="104" name="__module.resblocks.2.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="32623248" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="105" name="__module.resblocks.2.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="319,hidden_states.15">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="106" name="__module.resblocks.2/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="320,input.67">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="107" name="__module.resblocks.2/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="321,input.69">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="108" name="self.resblocks.2.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="32624272" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs1.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="109" name="__module.resblocks.2.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="25" pads_end="25" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="110" name="__module.resblocks.2.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="35507856" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="111" name="__module.resblocks.2.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="328,input.71">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="112" name="__module.resblocks.2/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="329,input.73">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="113" name="self.resblocks.2.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 11" offset="35508880" size="2883584" />
<output>
<port id="0" precision="FP32" names="self.resblocks.2.convs2.2.weight">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="114" name="__module.resblocks.2.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="115" name="__module.resblocks.2.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1" offset="38392464" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="116" name="__module.resblocks.2.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="336,hidden_states.17">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="117" name="__module.resblocks.2/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="337">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="118" name="aten::add_/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="51,res_state.3">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="119" name="Constant_66595" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="38393488" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="120" name="aten::div/Divide_1" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="56,input.75">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="121" name="57" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="57" />
</output>
</layer>
<layer id="122" name="aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="58,input.77">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="123" name="self.upsampler.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="256, 128, 8" offset="38393492" size="1048576" />
<output>
<port id="0" precision="FP32" names="self.upsampler.1.weight">
<dim>256</dim>
<dim>128</dim>
<dim>8</dim>
</port>
</output>
</layer>
<layer id="124" name="__module.upsampler.1/aten::_convolution/ConvolutionBackpropData" type="ConvolutionBackpropData" version="opset1">
<data strides="4" dilations="1" pads_begin="2" pads_end="2" auto_pad="explicit" output_padding="0" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>256</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>8</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="125" name="__module.upsampler.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="39442068" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="126" name="__module.upsampler.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="350,input.79">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="127" name="357" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="357" />
</output>
</layer>
<layer id="128" name="__module.resblocks.3/aten::leaky_relu/PRelu" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="370,442,514,input.103,input.125,input.81">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="129" name="self.resblocks.3.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="39442580" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs1.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="130" name="__module.resblocks.3.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="131" name="__module.resblocks.3.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="39639188" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="132" name="__module.resblocks.3.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="377,input.83">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="133" name="__module.resblocks.3/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="378,input.85">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="134" name="self.resblocks.3.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="39639700" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs2.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="135" name="__module.resblocks.3.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="136" name="__module.resblocks.3.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="39836308" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="137" name="__module.resblocks.3.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="385,hidden_states.19">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="138" name="__module.resblocks.3/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="386,input.87">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="139" name="__module.resblocks.3/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="387,input.89">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="140" name="self.resblocks.3.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="39836820" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs1.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="141" name="__module.resblocks.3.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="142" name="__module.resblocks.3.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="40033428" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="143" name="__module.resblocks.3.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="394,input.91">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="144" name="__module.resblocks.3/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="395,input.93">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="145" name="self.resblocks.3.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="40033940" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs2.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="146" name="__module.resblocks.3.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="147" name="__module.resblocks.3.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="40230548" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="148" name="__module.resblocks.3.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="402,hidden_states.21">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="149" name="__module.resblocks.3/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="403,input.95">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="150" name="__module.resblocks.3/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="404,input.97">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="151" name="self.resblocks.3.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="40231060" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs1.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="152" name="__module.resblocks.3.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="153" name="__module.resblocks.3.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="40427668" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="154" name="__module.resblocks.3.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="411,input.99">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="155" name="__module.resblocks.3/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="412,input.101">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="156" name="self.resblocks.3.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3" offset="40428180" size="196608" />
<output>
<port id="0" precision="FP32" names="self.resblocks.3.convs2.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="157" name="__module.resblocks.3.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="158" name="__module.resblocks.3.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="40624788" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="159" name="__module.resblocks.3.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="419,hidden_states.23">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="160" name="__module.resblocks.3/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="420_1">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="161" name="self.resblocks.4.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="40625300" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs1.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="162" name="__module.resblocks.4.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="163" name="__module.resblocks.4.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="41084052" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="164" name="__module.resblocks.4.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="449,input.105">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="165" name="429" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="429" />
</output>
</layer>
<layer id="166" name="__module.resblocks.4/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="450,input.107">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="167" name="self.resblocks.4.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="41084564" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs2.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="168" name="__module.resblocks.4.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="169" name="__module.resblocks.4.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="41543316" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="170" name="__module.resblocks.4.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="457,hidden_states.25">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="171" name="__module.resblocks.4/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="458,input.109">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="172" name="__module.resblocks.4/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="459,input.111">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="173" name="self.resblocks.4.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="41543828" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs1.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="174" name="__module.resblocks.4.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="9" pads_end="9" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="175" name="__module.resblocks.4.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="42002580" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="__module.resblocks.4.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="466,input.113">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="177" name="__module.resblocks.4/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="467,input.115">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="178" name="self.resblocks.4.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="42003092" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs2.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="179" name="__module.resblocks.4.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="180" name="__module.resblocks.4.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="42461844" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="181" name="__module.resblocks.4.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="474,hidden_states.27">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="182" name="__module.resblocks.4/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="475,input.117">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="183" name="__module.resblocks.4/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="476,input.119">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="184" name="self.resblocks.4.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="42462356" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs1.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="185" name="__module.resblocks.4.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="186" name="__module.resblocks.4.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="42921108" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="187" name="__module.resblocks.4.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="483,input.121">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="188" name="__module.resblocks.4/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="484,input.123">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="189" name="self.resblocks.4.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 7" offset="42921620" size="458752" />
<output>
<port id="0" precision="FP32" names="self.resblocks.4.convs2.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="190" name="__module.resblocks.4.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="191" name="__module.resblocks.4.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="43380372" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="192" name="__module.resblocks.4.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="491,hidden_states.29">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="193" name="__module.resblocks.4/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="492">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="194" name="aten::add_/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="420_2">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="195" name="self.resblocks.5.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="43380884" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs1.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="196" name="__module.resblocks.5.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="197" name="__module.resblocks.5.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="44101780" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="198" name="__module.resblocks.5.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="521,input.127">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="199" name="501" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="501" />
</output>
</layer>
<layer id="200" name="__module.resblocks.5/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="522,input.129">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="201" name="self.resblocks.5.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="44102292" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs2.0.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="202" name="__module.resblocks.5.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="203" name="__module.resblocks.5.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="44823188" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="204" name="__module.resblocks.5.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="529,hidden_states.31">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="205" name="__module.resblocks.5/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="530,input.131">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="206" name="__module.resblocks.5/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="531,input.133">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="207" name="self.resblocks.5.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="44823700" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs1.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="208" name="__module.resblocks.5.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="209" name="__module.resblocks.5.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="45544596" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="210" name="__module.resblocks.5.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="538,input.135">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="211" name="__module.resblocks.5/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="539,input.137">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="212" name="self.resblocks.5.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="45545108" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs2.1.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="213" name="__module.resblocks.5.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="214" name="__module.resblocks.5.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="46266004" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="215" name="__module.resblocks.5.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="546,hidden_states.33">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="216" name="__module.resblocks.5/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="547,input.139">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="217" name="__module.resblocks.5/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="548,input.141">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="218" name="self.resblocks.5.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="46266516" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs1.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="219" name="__module.resblocks.5.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="25" pads_end="25" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="220" name="__module.resblocks.5.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="46987412" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="221" name="__module.resblocks.5.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="555,input.143">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="222" name="__module.resblocks.5/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="556,input.145">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="223" name="self.resblocks.5.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 11" offset="46987924" size="720896" />
<output>
<port id="0" precision="FP32" names="self.resblocks.5.convs2.2.weight">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="224" name="__module.resblocks.5.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="225" name="__module.resblocks.5.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1" offset="47708820" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="226" name="__module.resblocks.5.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="563,hidden_states.35">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="227" name="__module.resblocks.5/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="564">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="228" name="aten::add_/Add_3" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="63,res_state.9">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="229" name="Constant_66596" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="38393488" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="230" name="aten::div/Divide_2" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="68,input.147">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="231" name="69" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="69" />
</output>
</layer>
<layer id="232" name="aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="70,input.149">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="233" name="self.upsampler.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="128, 64, 8" offset="47709332" size="262144" />
<output>
<port id="0" precision="FP32" names="self.upsampler.2.weight">
<dim>128</dim>
<dim>64</dim>
<dim>8</dim>
</port>
</output>
</layer>
<layer id="234" name="__module.upsampler.2/aten::_convolution/ConvolutionBackpropData" type="ConvolutionBackpropData" version="opset1">
<data strides="4" dilations="1" pads_begin="2" pads_end="2" auto_pad="explicit" output_padding="0" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>128</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>64</dim>
<dim>8</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="235" name="__module.upsampler.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="47971476" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="236" name="__module.upsampler.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="577,input.151">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="237" name="584" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="584" />
</output>
</layer>
<layer id="238" name="__module.resblocks.6/aten::leaky_relu/PRelu" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="597,669,741,input.153,input.175,input.197">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="239" name="self.resblocks.6.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="47971732" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs1.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="240" name="__module.resblocks.6.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="241" name="__module.resblocks.6.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48020884" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="242" name="__module.resblocks.6.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="604,input.155">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="243" name="__module.resblocks.6/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="605,input.157">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="244" name="self.resblocks.6.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="48021140" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs2.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="245" name="__module.resblocks.6.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="246" name="__module.resblocks.6.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48070292" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="247" name="__module.resblocks.6.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="612,hidden_states.37">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="248" name="__module.resblocks.6/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="613,input.159">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="249" name="__module.resblocks.6/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="614,input.161">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="250" name="self.resblocks.6.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="48070548" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs1.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="251" name="__module.resblocks.6.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="252" name="__module.resblocks.6.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48119700" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="253" name="__module.resblocks.6.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="621,input.163">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="254" name="__module.resblocks.6/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="622,input.165">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="255" name="self.resblocks.6.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="48119956" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs2.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="256" name="__module.resblocks.6.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="257" name="__module.resblocks.6.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48169108" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="258" name="__module.resblocks.6.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="629,hidden_states.39">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="259" name="__module.resblocks.6/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="630,input.167">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="260" name="__module.resblocks.6/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="631,input.169">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="261" name="self.resblocks.6.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="48169364" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs1.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="262" name="__module.resblocks.6.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="263" name="__module.resblocks.6.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48218516" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="264" name="__module.resblocks.6.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="638,input.171">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="265" name="__module.resblocks.6/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="639,input.173">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="266" name="self.resblocks.6.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 3" offset="48218772" size="49152" />
<output>
<port id="0" precision="FP32" names="self.resblocks.6.convs2.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="267" name="__module.resblocks.6.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="268" name="__module.resblocks.6.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48267924" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="269" name="__module.resblocks.6.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="646,hidden_states.41">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="270" name="__module.resblocks.6/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="647_1">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="271" name="self.resblocks.7.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48268180" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs1.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="272" name="__module.resblocks.7.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="273" name="__module.resblocks.7.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48382868" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="274" name="__module.resblocks.7.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="676,input.177">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="275" name="656" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="656" />
</output>
</layer>
<layer id="276" name="__module.resblocks.7/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="677,input.179">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="277" name="self.resblocks.7.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48383124" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs2.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="278" name="__module.resblocks.7.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="279" name="__module.resblocks.7.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48497812" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="280" name="__module.resblocks.7.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="684,hidden_states.43">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="281" name="__module.resblocks.7/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="685,input.181">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="282" name="__module.resblocks.7/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="686,input.183">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="283" name="self.resblocks.7.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48498068" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs1.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="284" name="__module.resblocks.7.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="9" pads_end="9" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="285" name="__module.resblocks.7.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48612756" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="286" name="__module.resblocks.7.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="693,input.185">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="287" name="__module.resblocks.7/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="694,input.187">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="288" name="self.resblocks.7.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48613012" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs2.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="289" name="__module.resblocks.7.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="290" name="__module.resblocks.7.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48727700" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="291" name="__module.resblocks.7.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="701,hidden_states.45">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="292" name="__module.resblocks.7/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="702,input.189">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="293" name="__module.resblocks.7/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="703,input.191">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="294" name="self.resblocks.7.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48727956" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs1.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="295" name="__module.resblocks.7.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="296" name="__module.resblocks.7.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48842644" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="297" name="__module.resblocks.7.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="710,input.193">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="298" name="__module.resblocks.7/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="711,input.195">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="299" name="self.resblocks.7.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 7" offset="48842900" size="114688" />
<output>
<port id="0" precision="FP32" names="self.resblocks.7.convs2.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="300" name="__module.resblocks.7.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="301" name="__module.resblocks.7.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="48957588" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="302" name="__module.resblocks.7.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="718,hidden_states.47">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="303" name="__module.resblocks.7/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="719">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="304" name="aten::add_/Add_4" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="647_2">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="305" name="self.resblocks.8.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="48957844" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs1.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="306" name="__module.resblocks.8.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="307" name="__module.resblocks.8.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="49138068" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="308" name="__module.resblocks.8.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="748,input.199">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="309" name="728" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="728" />
</output>
</layer>
<layer id="310" name="__module.resblocks.8/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="749,input.201">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="311" name="self.resblocks.8.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="49138324" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs2.0.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="312" name="__module.resblocks.8.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="313" name="__module.resblocks.8.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="49318548" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="314" name="__module.resblocks.8.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="756,hidden_states.49">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="315" name="__module.resblocks.8/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="757,input.203">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="316" name="__module.resblocks.8/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="758,input.205">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="317" name="self.resblocks.8.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="49318804" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs1.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="318" name="__module.resblocks.8.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="319" name="__module.resblocks.8.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="49499028" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="320" name="__module.resblocks.8.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="765,input.207">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="321" name="__module.resblocks.8/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="766,input.209">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="322" name="self.resblocks.8.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="49499284" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs2.1.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="323" name="__module.resblocks.8.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="324" name="__module.resblocks.8.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="49679508" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="325" name="__module.resblocks.8.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="773,hidden_states.51">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="326" name="__module.resblocks.8/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="774,input.211">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="327" name="__module.resblocks.8/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="775,input.213">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="328" name="self.resblocks.8.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="49679764" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs1.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="329" name="__module.resblocks.8.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="25" pads_end="25" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="330" name="__module.resblocks.8.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="49859988" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="331" name="__module.resblocks.8.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="782,input.215">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="332" name="__module.resblocks.8/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="783,input.217">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="333" name="self.resblocks.8.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 64, 11" offset="49860244" size="180224" />
<output>
<port id="0" precision="FP32" names="self.resblocks.8.convs2.2.weight">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="334" name="__module.resblocks.8.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>64</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="335" name="__module.resblocks.8.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1" offset="50040468" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="336" name="__module.resblocks.8.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="790,hidden_states.53">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="337" name="__module.resblocks.8/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="791">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="338" name="aten::add_/Add_5" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="75,res_state.15">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="339" name="Constant_66597" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="38393488" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="340" name="aten::div/Divide_3" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="80,input.219">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="341" name="81" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="81" />
</output>
</layer>
<layer id="342" name="aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="82,input.221">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="343" name="self.upsampler.3.weight" type="Const" version="opset1">
<data element_type="f32" shape="64, 32, 8" offset="50040724" size="65536" />
<output>
<port id="0" precision="FP32" names="self.upsampler.3.weight">
<dim>64</dim>
<dim>32</dim>
<dim>8</dim>
</port>
</output>
</layer>
<layer id="344" name="__module.upsampler.3/aten::_convolution/ConvolutionBackpropData" type="ConvolutionBackpropData" version="opset1">
<data strides="4" dilations="1" pads_begin="2" pads_end="2" auto_pad="explicit" output_padding="0" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>64</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>32</dim>
<dim>8</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="345" name="__module.upsampler.3/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50106260" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="346" name="__module.upsampler.3/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="804,input.223">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="347" name="811" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="811" />
</output>
</layer>
<layer id="348" name="__module.resblocks.9/aten::leaky_relu/PRelu" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="824,896,968,input.225,input.247,input.269">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="349" name="self.resblocks.9.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50106388" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs1.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="350" name="__module.resblocks.9.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="351" name="__module.resblocks.9.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50118676" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="352" name="__module.resblocks.9.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="831,input.227">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="353" name="__module.resblocks.9/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="832,input.229">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="354" name="self.resblocks.9.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50118804" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs2.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="355" name="__module.resblocks.9.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="356" name="__module.resblocks.9.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50131092" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="357" name="__module.resblocks.9.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="839,hidden_states.55">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="358" name="__module.resblocks.9/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="840,input.231">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="359" name="__module.resblocks.9/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="841,input.233">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="360" name="self.resblocks.9.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50131220" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs1.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="361" name="__module.resblocks.9.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="362" name="__module.resblocks.9.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50143508" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="363" name="__module.resblocks.9.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="848,input.235">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="364" name="__module.resblocks.9/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="849,input.237">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="365" name="self.resblocks.9.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50143636" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs2.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="366" name="__module.resblocks.9.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="367" name="__module.resblocks.9.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50155924" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="368" name="__module.resblocks.9.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="856,hidden_states.57">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="369" name="__module.resblocks.9/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="857,input.239">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="370" name="__module.resblocks.9/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="858,input.241">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="371" name="self.resblocks.9.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50156052" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs1.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="372" name="__module.resblocks.9.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="373" name="__module.resblocks.9.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50168340" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="374" name="__module.resblocks.9.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="865,input.243">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="375" name="__module.resblocks.9/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="866,input.245">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="376" name="self.resblocks.9.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 3" offset="50168468" size="12288" />
<output>
<port id="0" precision="FP32" names="self.resblocks.9.convs2.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="377" name="__module.resblocks.9.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="1" pads_end="1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="378" name="__module.resblocks.9.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50180756" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="379" name="__module.resblocks.9.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="873,hidden_states.59">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="380" name="__module.resblocks.9/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="874_1">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="381" name="self.resblocks.10.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50180884" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs1.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="382" name="__module.resblocks.10.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="383" name="__module.resblocks.10.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50209556" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="384" name="__module.resblocks.10.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="903,input.249">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="385" name="883" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="883" />
</output>
</layer>
<layer id="386" name="__module.resblocks.10/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="904,input.251">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="387" name="self.resblocks.10.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50209684" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs2.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="388" name="__module.resblocks.10.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="389" name="__module.resblocks.10.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50238356" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="390" name="__module.resblocks.10.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="911,hidden_states.61">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="391" name="__module.resblocks.10/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="912,input.253">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="392" name="__module.resblocks.10/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="913,input.255">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="393" name="self.resblocks.10.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50238484" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs1.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="394" name="__module.resblocks.10.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="9" pads_end="9" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="395" name="__module.resblocks.10.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50267156" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="396" name="__module.resblocks.10.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="920,input.257">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="397" name="__module.resblocks.10/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="921,input.259">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="398" name="self.resblocks.10.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50267284" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs2.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="399" name="__module.resblocks.10.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="400" name="__module.resblocks.10.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50295956" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="401" name="__module.resblocks.10.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="928,hidden_states.63">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="402" name="__module.resblocks.10/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="929,input.261">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="403" name="__module.resblocks.10/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="930,input.263">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="404" name="self.resblocks.10.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50296084" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs1.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="405" name="__module.resblocks.10.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="406" name="__module.resblocks.10.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50324756" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="407" name="__module.resblocks.10.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="937,input.265">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="408" name="__module.resblocks.10/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="938,input.267">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="409" name="self.resblocks.10.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 7" offset="50324884" size="28672" />
<output>
<port id="0" precision="FP32" names="self.resblocks.10.convs2.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="410" name="__module.resblocks.10.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="411" name="__module.resblocks.10.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50353556" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="412" name="__module.resblocks.10.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="945,hidden_states.65">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="413" name="__module.resblocks.10/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="946">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="414" name="aten::add_/Add_6" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="874_2">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="415" name="self.resblocks.11.convs1.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50353684" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs1.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="416" name="__module.resblocks.11.convs1.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="417" name="__module.resblocks.11.convs1.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50398740" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="418" name="__module.resblocks.11.convs1.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="975,input.271">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="419" name="955" type="Const" version="opset1">
<data element_type="f32" shape="" offset="1149580" size="4" />
<output>
<port id="0" precision="FP32" names="955" />
</output>
</layer>
<layer id="420" name="__module.resblocks.11/aten::leaky_relu/PRelu_1" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="976,input.273">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="421" name="self.resblocks.11.convs2.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50398868" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs2.0.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="422" name="__module.resblocks.11.convs2.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="423" name="__module.resblocks.11.convs2.0/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50443924" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="424" name="__module.resblocks.11.convs2.0/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="983,hidden_states.67">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="425" name="__module.resblocks.11/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="984,input.275">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="426" name="__module.resblocks.11/aten::leaky_relu/PRelu_2" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="985,input.277">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="427" name="self.resblocks.11.convs1.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50444052" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs1.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="428" name="__module.resblocks.11.convs1.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="3" pads_begin="15" pads_end="15" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="429" name="__module.resblocks.11.convs1.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50489108" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="430" name="__module.resblocks.11.convs1.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="992,input.279">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="431" name="__module.resblocks.11/aten::leaky_relu/PRelu_3" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="993,input.281">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="432" name="self.resblocks.11.convs2.1.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50489236" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs2.1.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="433" name="__module.resblocks.11.convs2.1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="434" name="__module.resblocks.11.convs2.1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50534292" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="435" name="__module.resblocks.11.convs2.1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1000,hidden_states.69">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="436" name="__module.resblocks.11/aten::add/Add_1" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1001,input.283">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="437" name="__module.resblocks.11/aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="1002,input.285">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="438" name="self.resblocks.11.convs1.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50534420" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs1.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="439" name="__module.resblocks.11.convs1.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="5" pads_begin="25" pads_end="25" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="440" name="__module.resblocks.11.convs1.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50579476" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="441" name="__module.resblocks.11.convs1.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1009,input.287">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="442" name="__module.resblocks.11/aten::leaky_relu/PRelu_5" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="1010,input.289">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="443" name="self.resblocks.11.convs2.2.weight" type="Const" version="opset1">
<data element_type="f32" shape="32, 32, 11" offset="50579604" size="45056" />
<output>
<port id="0" precision="FP32" names="self.resblocks.11.convs2.2.weight">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</output>
</layer>
<layer id="444" name="__module.resblocks.11.convs2.2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="5" pads_end="5" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>32</dim>
<dim>11</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="445" name="__module.resblocks.11.convs2.2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 1" offset="50624660" size="128" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="446" name="__module.resblocks.11.convs2.2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1017,hidden_states.71">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="447" name="__module.resblocks.11/aten::add/Add_2" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1018">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="448" name="aten::add_/Add_7" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="87,res_state.21">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="449" name="Constant_66598" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="38393488" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="450" name="aten::div/Divide_4" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="92,input.291">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="451" name="93" type="Const" version="opset1">
<data element_type="f32" shape="" offset="50624788" size="4" />
<output>
<port id="0" precision="FP32" names="93" />
</output>
</layer>
<layer id="452" name="aten::leaky_relu/PRelu_4" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="94,input">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="453" name="self.conv_post.weight" type="Const" version="opset1">
<data element_type="f32" shape="1, 32, 7" offset="50624792" size="896" />
<output>
<port id="0" precision="FP32" names="self.conv_post.weight">
<dim>1</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="454" name="__module.conv_post/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1" dilations="1" pads_begin="3" pads_end="3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>32</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="455" name="__module.conv_post/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="50625688" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="456" name="__module.conv_post/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="1030,hidden_states.73">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="457" name="aten::tanh/Tanh" type="Tanh" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="96,hidden_states">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="458" name="97" type="Const" version="opset1">
<data element_type="i64" shape="" offset="50625692" size="8" />
<output>
<port id="0" precision="I64" names="97" />
</output>
</layer>
<layer id="459" name="aten::squeeze/Squeeze" type="Squeeze" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64" />
</input>
<output>
<port id="2" precision="FP32" names="waveform">
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="460" name="Result_61105" type="Result" version="opset1" output_names="waveform">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="6" to-port="0" />
<edge from-layer="5" from-port="0" to-layer="6" to-port="1" />
<edge from-layer="6" from-port="2" to-layer="8" to-port="0" />
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="12" to-port="0" />
<edge from-layer="11" from-port="0" to-layer="12" to-port="1" />
<edge from-layer="12" from-port="2" to-layer="14" to-port="0" />
<edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
<edge from-layer="14" from-port="2" to-layer="16" to-port="0" />
<edge from-layer="15" from-port="0" to-layer="16" to-port="1" />
<edge from-layer="16" from-port="2" to-layer="18" to-port="0" />
<edge from-layer="16" from-port="2" to-layer="28" to-port="1" />
<edge from-layer="16" from-port="2" to-layer="61" to-port="1" />
<edge from-layer="16" from-port="2" to-layer="95" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="34" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="29" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="23" to-port="1" />
<edge from-layer="17" from-port="0" to-layer="45" to-port="1" />
<edge from-layer="18" from-port="2" to-layer="86" to-port="0" />
<edge from-layer="18" from-port="2" to-layer="52" to-port="0" />
<edge from-layer="18" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="19" from-port="0" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="22" to-port="0" />
<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
<edge from-layer="22" from-port="2" to-layer="23" to-port="0" />
<edge from-layer="23" from-port="2" to-layer="25" to-port="0" />
<edge from-layer="24" from-port="0" to-layer="25" to-port="1" />
<edge from-layer="25" from-port="2" to-layer="27" to-port="0" />
<edge from-layer="26" from-port="0" to-layer="27" to-port="1" />
<edge from-layer="27" from-port="2" to-layer="28" to-port="0" />
<edge from-layer="28" from-port="2" to-layer="39" to-port="1" />
<edge from-layer="28" from-port="2" to-layer="29" to-port="0" />
<edge from-layer="29" from-port="2" to-layer="31" to-port="0" />
<edge from-layer="30" from-port="0" to-layer="31" to-port="1" />
<edge from-layer="31" from-port="2" to-layer="33" to-port="0" />
<edge from-layer="32" from-port="0" to-layer="33" to-port="1" />
<edge from-layer="33" from-port="2" to-layer="34" to-port="0" />
<edge from-layer="34" from-port="2" to-layer="36" to-port="0" />
<edge from-layer="35" from-port="0" to-layer="36" to-port="1" />
<edge from-layer="36" from-port="2" to-layer="38" to-port="0" />
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="39" to-port="0" />
<edge from-layer="39" from-port="2" to-layer="40" to-port="0" />
<edge from-layer="39" from-port="2" to-layer="50" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="41" from-port="0" to-layer="42" to-port="1" />
<edge from-layer="42" from-port="2" to-layer="44" to-port="0" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
<edge from-layer="44" from-port="2" to-layer="45" to-port="0" />
<edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
<edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
<edge from-layer="47" from-port="2" to-layer="49" to-port="0" />
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
<edge from-layer="49" from-port="2" to-layer="50" to-port="0" />
<edge from-layer="50" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
<edge from-layer="52" from-port="2" to-layer="54" to-port="0" />
<edge from-layer="53" from-port="0" to-layer="54" to-port="1" />
<edge from-layer="54" from-port="2" to-layer="56" to-port="0" />
<edge from-layer="55" from-port="0" to-layer="56" to-port="1" />
<edge from-layer="55" from-port="0" to-layer="62" to-port="1" />
<edge from-layer="55" from-port="0" to-layer="67" to-port="1" />
<edge from-layer="55" from-port="0" to-layer="73" to-port="1" />
<edge from-layer="55" from-port="0" to-layer="78" to-port="1" />
<edge from-layer="56" from-port="2" to-layer="58" to-port="0" />
<edge from-layer="57" from-port="0" to-layer="58" to-port="1" />
<edge from-layer="58" from-port="2" to-layer="60" to-port="0" />
<edge from-layer="59" from-port="0" to-layer="60" to-port="1" />
<edge from-layer="60" from-port="2" to-layer="61" to-port="0" />
<edge from-layer="61" from-port="2" to-layer="72" to-port="1" />
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
<edge from-layer="62" from-port="2" to-layer="64" to-port="0" />
<edge from-layer="63" from-port="0" to-layer="64" to-port="1" />
<edge from-layer="64" from-port="2" to-layer="66" to-port="0" />
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
<edge from-layer="66" from-port="2" to-layer="67" to-port="0" />
<edge from-layer="67" from-port="2" to-layer="69" to-port="0" />
<edge from-layer="68" from-port="0" to-layer="69" to-port="1" />
<edge from-layer="69" from-port="2" to-layer="71" to-port="0" />
<edge from-layer="70" from-port="0" to-layer="71" to-port="1" />
<edge from-layer="71" from-port="2" to-layer="72" to-port="0" />
<edge from-layer="72" from-port="2" to-layer="73" to-port="0" />
<edge from-layer="72" from-port="2" to-layer="83" to-port="1" />
<edge from-layer="73" from-port="2" to-layer="75" to-port="0" />
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
<edge from-layer="77" from-port="2" to-layer="78" to-port="0" />
<edge from-layer="78" from-port="2" to-layer="80" to-port="0" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="1" />
<edge from-layer="80" from-port="2" to-layer="82" to-port="0" />
<edge from-layer="81" from-port="0" to-layer="82" to-port="1" />
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
<edge from-layer="83" from-port="2" to-layer="84" to-port="1" />
<edge from-layer="84" from-port="2" to-layer="118" to-port="0" />
<edge from-layer="85" from-port="0" to-layer="86" to-port="1" />
<edge from-layer="86" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="87" from-port="0" to-layer="88" to-port="1" />
<edge from-layer="88" from-port="2" to-layer="90" to-port="0" />
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
<edge from-layer="89" from-port="0" to-layer="96" to-port="1" />
<edge from-layer="89" from-port="0" to-layer="101" to-port="1" />
<edge from-layer="89" from-port="0" to-layer="112" to-port="1" />
<edge from-layer="89" from-port="0" to-layer="107" to-port="1" />
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
<edge from-layer="92" from-port="2" to-layer="94" to-port="0" />
<edge from-layer="93" from-port="0" to-layer="94" to-port="1" />
<edge from-layer="94" from-port="2" to-layer="95" to-port="0" />
<edge from-layer="95" from-port="2" to-layer="96" to-port="0" />
<edge from-layer="95" from-port="2" to-layer="106" to-port="1" />
<edge from-layer="96" from-port="2" to-layer="98" to-port="0" />
<edge from-layer="97" from-port="0" to-layer="98" to-port="1" />
<edge from-layer="98" from-port="2" to-layer="100" to-port="0" />
<edge from-layer="99" from-port="0" to-layer="100" to-port="1" />
<edge from-layer="100" from-port="2" to-layer="101" to-port="0" />
<edge from-layer="101" from-port="2" to-layer="103" to-port="0" />
<edge from-layer="102" from-port="0" to-layer="103" to-port="1" />
<edge from-layer="103" from-port="2" to-layer="105" to-port="0" />
<edge from-layer="104" from-port="0" to-layer="105" to-port="1" />
<edge from-layer="105" from-port="2" to-layer="106" to-port="0" />
<edge from-layer="106" from-port="2" to-layer="107" to-port="0" />
<edge from-layer="106" from-port="2" to-layer="117" to-port="1" />
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
<edge from-layer="109" from-port="2" to-layer="111" to-port="0" />
<edge from-layer="110" from-port="0" to-layer="111" to-port="1" />
<edge from-layer="111" from-port="2" to-layer="112" to-port="0" />
<edge from-layer="112" from-port="2" to-layer="114" to-port="0" />
<edge from-layer="113" from-port="0" to-layer="114" to-port="1" />
<edge from-layer="114" from-port="2" to-layer="116" to-port="0" />
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
<edge from-layer="116" from-port="2" to-layer="117" to-port="0" />
<edge from-layer="117" from-port="2" to-layer="118" to-port="1" />
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
<edge from-layer="120" from-port="2" to-layer="122" to-port="0" />
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
<edge from-layer="122" from-port="2" to-layer="124" to-port="0" />
<edge from-layer="123" from-port="0" to-layer="124" to-port="1" />
<edge from-layer="124" from-port="2" to-layer="126" to-port="0" />
<edge from-layer="125" from-port="0" to-layer="126" to-port="1" />
<edge from-layer="126" from-port="2" to-layer="128" to-port="0" />
<edge from-layer="126" from-port="2" to-layer="138" to-port="1" />
<edge from-layer="126" from-port="2" to-layer="171" to-port="1" />
<edge from-layer="126" from-port="2" to-layer="205" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="133" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="144" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="150" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="128" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="139" to-port="1" />
<edge from-layer="127" from-port="0" to-layer="155" to-port="1" />
<edge from-layer="128" from-port="2" to-layer="196" to-port="0" />
<edge from-layer="128" from-port="2" to-layer="130" to-port="0" />
<edge from-layer="128" from-port="2" to-layer="162" to-port="0" />
<edge from-layer="129" from-port="0" to-layer="130" to-port="1" />
<edge from-layer="130" from-port="2" to-layer="132" to-port="0" />
<edge from-layer="131" from-port="0" to-layer="132" to-port="1" />
<edge from-layer="132" from-port="2" to-layer="133" to-port="0" />
<edge from-layer="133" from-port="2" to-layer="135" to-port="0" />
<edge from-layer="134" from-port="0" to-layer="135" to-port="1" />
<edge from-layer="135" from-port="2" to-layer="137" to-port="0" />
<edge from-layer="136" from-port="0" to-layer="137" to-port="1" />
<edge from-layer="137" from-port="2" to-layer="138" to-port="0" />
<edge from-layer="138" from-port="2" to-layer="149" to-port="1" />
<edge from-layer="138" from-port="2" to-layer="139" to-port="0" />
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
<edge from-layer="141" from-port="2" to-layer="143" to-port="0" />
<edge from-layer="142" from-port="0" to-layer="143" to-port="1" />
<edge from-layer="143" from-port="2" to-layer="144" to-port="0" />
<edge from-layer="144" from-port="2" to-layer="146" to-port="0" />
<edge from-layer="145" from-port="0" to-layer="146" to-port="1" />
<edge from-layer="146" from-port="2" to-layer="148" to-port="0" />
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
<edge from-layer="148" from-port="2" to-layer="149" to-port="0" />
<edge from-layer="149" from-port="2" to-layer="150" to-port="0" />
<edge from-layer="149" from-port="2" to-layer="160" to-port="1" />
<edge from-layer="150" from-port="2" to-layer="152" to-port="0" />
<edge from-layer="151" from-port="0" to-layer="152" to-port="1" />
<edge from-layer="152" from-port="2" to-layer="154" to-port="0" />
<edge from-layer="153" from-port="0" to-layer="154" to-port="1" />
<edge from-layer="154" from-port="2" to-layer="155" to-port="0" />
<edge from-layer="155" from-port="2" to-layer="157" to-port="0" />
<edge from-layer="156" from-port="0" to-layer="157" to-port="1" />
<edge from-layer="157" from-port="2" to-layer="159" to-port="0" />
<edge from-layer="158" from-port="0" to-layer="159" to-port="1" />
<edge from-layer="159" from-port="2" to-layer="160" to-port="0" />
<edge from-layer="160" from-port="2" to-layer="194" to-port="0" />
<edge from-layer="161" from-port="0" to-layer="162" to-port="1" />
<edge from-layer="162" from-port="2" to-layer="164" to-port="0" />
<edge from-layer="163" from-port="0" to-layer="164" to-port="1" />
<edge from-layer="164" from-port="2" to-layer="166" to-port="0" />
<edge from-layer="165" from-port="0" to-layer="166" to-port="1" />
<edge from-layer="165" from-port="0" to-layer="172" to-port="1" />
<edge from-layer="165" from-port="0" to-layer="177" to-port="1" />
<edge from-layer="165" from-port="0" to-layer="183" to-port="1" />
<edge from-layer="165" from-port="0" to-layer="188" to-port="1" />
<edge from-layer="166" from-port="2" to-layer="168" to-port="0" />
<edge from-layer="167" from-port="0" to-layer="168" to-port="1" />
<edge from-layer="168" from-port="2" to-layer="170" to-port="0" />
<edge from-layer="169" from-port="0" to-layer="170" to-port="1" />
<edge from-layer="170" from-port="2" to-layer="171" to-port="0" />
<edge from-layer="171" from-port="2" to-layer="182" to-port="1" />
<edge from-layer="171" from-port="2" to-layer="172" to-port="0" />
<edge from-layer="172" from-port="2" to-layer="174" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="174" to-port="1" />
<edge from-layer="174" from-port="2" to-layer="176" to-port="0" />
<edge from-layer="175" from-port="0" to-layer="176" to-port="1" />
<edge from-layer="176" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="177" from-port="2" to-layer="179" to-port="0" />
<edge from-layer="178" from-port="0" to-layer="179" to-port="1" />
<edge from-layer="179" from-port="2" to-layer="181" to-port="0" />
<edge from-layer="180" from-port="0" to-layer="181" to-port="1" />
<edge from-layer="181" from-port="2" to-layer="182" to-port="0" />
<edge from-layer="182" from-port="2" to-layer="183" to-port="0" />
<edge from-layer="182" from-port="2" to-layer="193" to-port="1" />
<edge from-layer="183" from-port="2" to-layer="185" to-port="0" />
<edge from-layer="184" from-port="0" to-layer="185" to-port="1" />
<edge from-layer="185" from-port="2" to-layer="187" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="187" to-port="1" />
<edge from-layer="187" from-port="2" to-layer="188" to-port="0" />
<edge from-layer="188" from-port="2" to-layer="190" to-port="0" />
<edge from-layer="189" from-port="0" to-layer="190" to-port="1" />
<edge from-layer="190" from-port="2" to-layer="192" to-port="0" />
<edge from-layer="191" from-port="0" to-layer="192" to-port="1" />
<edge from-layer="192" from-port="2" to-layer="193" to-port="0" />
<edge from-layer="193" from-port="2" to-layer="194" to-port="1" />
<edge from-layer="194" from-port="2" to-layer="228" to-port="0" />
<edge from-layer="195" from-port="0" to-layer="196" to-port="1" />
<edge from-layer="196" from-port="2" to-layer="198" to-port="0" />
<edge from-layer="197" from-port="0" to-layer="198" to-port="1" />
<edge from-layer="198" from-port="2" to-layer="200" to-port="0" />
<edge from-layer="199" from-port="0" to-layer="200" to-port="1" />
<edge from-layer="199" from-port="0" to-layer="217" to-port="1" />
<edge from-layer="199" from-port="0" to-layer="206" to-port="1" />
<edge from-layer="199" from-port="0" to-layer="211" to-port="1" />
<edge from-layer="199" from-port="0" to-layer="222" to-port="1" />
<edge from-layer="200" from-port="2" to-layer="202" to-port="0" />
<edge from-layer="201" from-port="0" to-layer="202" to-port="1" />
<edge from-layer="202" from-port="2" to-layer="204" to-port="0" />
<edge from-layer="203" from-port="0" to-layer="204" to-port="1" />
<edge from-layer="204" from-port="2" to-layer="205" to-port="0" />
<edge from-layer="205" from-port="2" to-layer="206" to-port="0" />
<edge from-layer="205" from-port="2" to-layer="216" to-port="1" />
<edge from-layer="206" from-port="2" to-layer="208" to-port="0" />
<edge from-layer="207" from-port="0" to-layer="208" to-port="1" />
<edge from-layer="208" from-port="2" to-layer="210" to-port="0" />
<edge from-layer="209" from-port="0" to-layer="210" to-port="1" />
<edge from-layer="210" from-port="2" to-layer="211" to-port="0" />
<edge from-layer="211" from-port="2" to-layer="213" to-port="0" />
<edge from-layer="212" from-port="0" to-layer="213" to-port="1" />
<edge from-layer="213" from-port="2" to-layer="215" to-port="0" />
<edge from-layer="214" from-port="0" to-layer="215" to-port="1" />
<edge from-layer="215" from-port="2" to-layer="216" to-port="0" />
<edge from-layer="216" from-port="2" to-layer="217" to-port="0" />
<edge from-layer="216" from-port="2" to-layer="227" to-port="1" />
<edge from-layer="217" from-port="2" to-layer="219" to-port="0" />
<edge from-layer="218" from-port="0" to-layer="219" to-port="1" />
<edge from-layer="219" from-port="2" to-layer="221" to-port="0" />
<edge from-layer="220" from-port="0" to-layer="221" to-port="1" />
<edge from-layer="221" from-port="2" to-layer="222" to-port="0" />
<edge from-layer="222" from-port="2" to-layer="224" to-port="0" />
<edge from-layer="223" from-port="0" to-layer="224" to-port="1" />
<edge from-layer="224" from-port="2" to-layer="226" to-port="0" />
<edge from-layer="225" from-port="0" to-layer="226" to-port="1" />
<edge from-layer="226" from-port="2" to-layer="227" to-port="0" />
<edge from-layer="227" from-port="2" to-layer="228" to-port="1" />
<edge from-layer="228" from-port="2" to-layer="230" to-port="0" />
<edge from-layer="229" from-port="0" to-layer="230" to-port="1" />
<edge from-layer="230" from-port="2" to-layer="232" to-port="0" />
<edge from-layer="231" from-port="0" to-layer="232" to-port="1" />
<edge from-layer="232" from-port="2" to-layer="234" to-port="0" />
<edge from-layer="233" from-port="0" to-layer="234" to-port="1" />
<edge from-layer="234" from-port="2" to-layer="236" to-port="0" />
<edge from-layer="235" from-port="0" to-layer="236" to-port="1" />
<edge from-layer="236" from-port="2" to-layer="238" to-port="0" />
<edge from-layer="236" from-port="2" to-layer="248" to-port="1" />
<edge from-layer="236" from-port="2" to-layer="281" to-port="1" />
<edge from-layer="236" from-port="2" to-layer="315" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="238" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="265" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="254" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="260" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="249" to-port="1" />
<edge from-layer="237" from-port="0" to-layer="243" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="240" to-port="0" />
<edge from-layer="238" from-port="2" to-layer="272" to-port="0" />
<edge from-layer="238" from-port="2" to-layer="306" to-port="0" />
<edge from-layer="239" from-port="0" to-layer="240" to-port="1" />
<edge from-layer="240" from-port="2" to-layer="242" to-port="0" />
<edge from-layer="241" from-port="0" to-layer="242" to-port="1" />
<edge from-layer="242" from-port="2" to-layer="243" to-port="0" />
<edge from-layer="243" from-port="2" to-layer="245" to-port="0" />
<edge from-layer="244" from-port="0" to-layer="245" to-port="1" />
<edge from-layer="245" from-port="2" to-layer="247" to-port="0" />
<edge from-layer="246" from-port="0" to-layer="247" to-port="1" />
<edge from-layer="247" from-port="2" to-layer="248" to-port="0" />
<edge from-layer="248" from-port="2" to-layer="259" to-port="1" />
<edge from-layer="248" from-port="2" to-layer="249" to-port="0" />
<edge from-layer="249" from-port="2" to-layer="251" to-port="0" />
<edge from-layer="250" from-port="0" to-layer="251" to-port="1" />
<edge from-layer="251" from-port="2" to-layer="253" to-port="0" />
<edge from-layer="252" from-port="0" to-layer="253" to-port="1" />
<edge from-layer="253" from-port="2" to-layer="254" to-port="0" />
<edge from-layer="254" from-port="2" to-layer="256" to-port="0" />
<edge from-layer="255" from-port="0" to-layer="256" to-port="1" />
<edge from-layer="256" from-port="2" to-layer="258" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="258" to-port="1" />
<edge from-layer="258" from-port="2" to-layer="259" to-port="0" />
<edge from-layer="259" from-port="2" to-layer="270" to-port="1" />
<edge from-layer="259" from-port="2" to-layer="260" to-port="0" />
<edge from-layer="260" from-port="2" to-layer="262" to-port="0" />
<edge from-layer="261" from-port="0" to-layer="262" to-port="1" />
<edge from-layer="262" from-port="2" to-layer="264" to-port="0" />
<edge from-layer="263" from-port="0" to-layer="264" to-port="1" />
<edge from-layer="264" from-port="2" to-layer="265" to-port="0" />
<edge from-layer="265" from-port="2" to-layer="267" to-port="0" />
<edge from-layer="266" from-port="0" to-layer="267" to-port="1" />
<edge from-layer="267" from-port="2" to-layer="269" to-port="0" />
<edge from-layer="268" from-port="0" to-layer="269" to-port="1" />
<edge from-layer="269" from-port="2" to-layer="270" to-port="0" />
<edge from-layer="270" from-port="2" to-layer="304" to-port="0" />
<edge from-layer="271" from-port="0" to-layer="272" to-port="1" />
<edge from-layer="272" from-port="2" to-layer="274" to-port="0" />
<edge from-layer="273" from-port="0" to-layer="274" to-port="1" />
<edge from-layer="274" from-port="2" to-layer="276" to-port="0" />
<edge from-layer="275" from-port="0" to-layer="276" to-port="1" />
<edge from-layer="275" from-port="0" to-layer="282" to-port="1" />
<edge from-layer="275" from-port="0" to-layer="287" to-port="1" />
<edge from-layer="275" from-port="0" to-layer="293" to-port="1" />
<edge from-layer="275" from-port="0" to-layer="298" to-port="1" />
<edge from-layer="276" from-port="2" to-layer="278" to-port="0" />
<edge from-layer="277" from-port="0" to-layer="278" to-port="1" />
<edge from-layer="278" from-port="2" to-layer="280" to-port="0" />
<edge from-layer="279" from-port="0" to-layer="280" to-port="1" />
<edge from-layer="280" from-port="2" to-layer="281" to-port="0" />
<edge from-layer="281" from-port="2" to-layer="282" to-port="0" />
<edge from-layer="281" from-port="2" to-layer="292" to-port="1" />
<edge from-layer="282" from-port="2" to-layer="284" to-port="0" />
<edge from-layer="283" from-port="0" to-layer="284" to-port="1" />
<edge from-layer="284" from-port="2" to-layer="286" to-port="0" />
<edge from-layer="285" from-port="0" to-layer="286" to-port="1" />
<edge from-layer="286" from-port="2" to-layer="287" to-port="0" />
<edge from-layer="287" from-port="2" to-layer="289" to-port="0" />
<edge from-layer="288" from-port="0" to-layer="289" to-port="1" />
<edge from-layer="289" from-port="2" to-layer="291" to-port="0" />
<edge from-layer="290" from-port="0" to-layer="291" to-port="1" />
<edge from-layer="291" from-port="2" to-layer="292" to-port="0" />
<edge from-layer="292" from-port="2" to-layer="303" to-port="1" />
<edge from-layer="292" from-port="2" to-layer="293" to-port="0" />
<edge from-layer="293" from-port="2" to-layer="295" to-port="0" />
<edge from-layer="294" from-port="0" to-layer="295" to-port="1" />
<edge from-layer="295" from-port="2" to-layer="297" to-port="0" />
<edge from-layer="296" from-port="0" to-layer="297" to-port="1" />
<edge from-layer="297" from-port="2" to-layer="298" to-port="0" />
<edge from-layer="298" from-port="2" to-layer="300" to-port="0" />
<edge from-layer="299" from-port="0" to-layer="300" to-port="1" />
<edge from-layer="300" from-port="2" to-layer="302" to-port="0" />
<edge from-layer="301" from-port="0" to-layer="302" to-port="1" />
<edge from-layer="302" from-port="2" to-layer="303" to-port="0" />
<edge from-layer="303" from-port="2" to-layer="304" to-port="1" />
<edge from-layer="304" from-port="2" to-layer="338" to-port="0" />
<edge from-layer="305" from-port="0" to-layer="306" to-port="1" />
<edge from-layer="306" from-port="2" to-layer="308" to-port="0" />
<edge from-layer="307" from-port="0" to-layer="308" to-port="1" />
<edge from-layer="308" from-port="2" to-layer="310" to-port="0" />
<edge from-layer="309" from-port="0" to-layer="310" to-port="1" />
<edge from-layer="309" from-port="0" to-layer="321" to-port="1" />
<edge from-layer="309" from-port="0" to-layer="316" to-port="1" />
<edge from-layer="309" from-port="0" to-layer="332" to-port="1" />
<edge from-layer="309" from-port="0" to-layer="327" to-port="1" />
<edge from-layer="310" from-port="2" to-layer="312" to-port="0" />
<edge from-layer="311" from-port="0" to-layer="312" to-port="1" />
<edge from-layer="312" from-port="2" to-layer="314" to-port="0" />
<edge from-layer="313" from-port="0" to-layer="314" to-port="1" />
<edge from-layer="314" from-port="2" to-layer="315" to-port="0" />
<edge from-layer="315" from-port="2" to-layer="316" to-port="0" />
<edge from-layer="315" from-port="2" to-layer="326" to-port="1" />
<edge from-layer="316" from-port="2" to-layer="318" to-port="0" />
<edge from-layer="317" from-port="0" to-layer="318" to-port="1" />
<edge from-layer="318" from-port="2" to-layer="320" to-port="0" />
<edge from-layer="319" from-port="0" to-layer="320" to-port="1" />
<edge from-layer="320" from-port="2" to-layer="321" to-port="0" />
<edge from-layer="321" from-port="2" to-layer="323" to-port="0" />
<edge from-layer="322" from-port="0" to-layer="323" to-port="1" />
<edge from-layer="323" from-port="2" to-layer="325" to-port="0" />
<edge from-layer="324" from-port="0" to-layer="325" to-port="1" />
<edge from-layer="325" from-port="2" to-layer="326" to-port="0" />
<edge from-layer="326" from-port="2" to-layer="327" to-port="0" />
<edge from-layer="326" from-port="2" to-layer="337" to-port="1" />
<edge from-layer="327" from-port="2" to-layer="329" to-port="0" />
<edge from-layer="328" from-port="0" to-layer="329" to-port="1" />
<edge from-layer="329" from-port="2" to-layer="331" to-port="0" />
<edge from-layer="330" from-port="0" to-layer="331" to-port="1" />
<edge from-layer="331" from-port="2" to-layer="332" to-port="0" />
<edge from-layer="332" from-port="2" to-layer="334" to-port="0" />
<edge from-layer="333" from-port="0" to-layer="334" to-port="1" />
<edge from-layer="334" from-port="2" to-layer="336" to-port="0" />
<edge from-layer="335" from-port="0" to-layer="336" to-port="1" />
<edge from-layer="336" from-port="2" to-layer="337" to-port="0" />
<edge from-layer="337" from-port="2" to-layer="338" to-port="1" />
<edge from-layer="338" from-port="2" to-layer="340" to-port="0" />
<edge from-layer="339" from-port="0" to-layer="340" to-port="1" />
<edge from-layer="340" from-port="2" to-layer="342" to-port="0" />
<edge from-layer="341" from-port="0" to-layer="342" to-port="1" />
<edge from-layer="342" from-port="2" to-layer="344" to-port="0" />
<edge from-layer="343" from-port="0" to-layer="344" to-port="1" />
<edge from-layer="344" from-port="2" to-layer="346" to-port="0" />
<edge from-layer="345" from-port="0" to-layer="346" to-port="1" />
<edge from-layer="346" from-port="2" to-layer="348" to-port="0" />
<edge from-layer="346" from-port="2" to-layer="425" to-port="1" />
<edge from-layer="346" from-port="2" to-layer="391" to-port="1" />
<edge from-layer="346" from-port="2" to-layer="358" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="348" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="364" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="375" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="353" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="359" to-port="1" />
<edge from-layer="347" from-port="0" to-layer="370" to-port="1" />
<edge from-layer="348" from-port="2" to-layer="350" to-port="0" />
<edge from-layer="348" from-port="2" to-layer="382" to-port="0" />
<edge from-layer="348" from-port="2" to-layer="416" to-port="0" />
<edge from-layer="349" from-port="0" to-layer="350" to-port="1" />
<edge from-layer="350" from-port="2" to-layer="352" to-port="0" />
<edge from-layer="351" from-port="0" to-layer="352" to-port="1" />
<edge from-layer="352" from-port="2" to-layer="353" to-port="0" />
<edge from-layer="353" from-port="2" to-layer="355" to-port="0" />
<edge from-layer="354" from-port="0" to-layer="355" to-port="1" />
<edge from-layer="355" from-port="2" to-layer="357" to-port="0" />
<edge from-layer="356" from-port="0" to-layer="357" to-port="1" />
<edge from-layer="357" from-port="2" to-layer="358" to-port="0" />
<edge from-layer="358" from-port="2" to-layer="369" to-port="1" />
<edge from-layer="358" from-port="2" to-layer="359" to-port="0" />
<edge from-layer="359" from-port="2" to-layer="361" to-port="0" />
<edge from-layer="360" from-port="0" to-layer="361" to-port="1" />
<edge from-layer="361" from-port="2" to-layer="363" to-port="0" />
<edge from-layer="362" from-port="0" to-layer="363" to-port="1" />
<edge from-layer="363" from-port="2" to-layer="364" to-port="0" />
<edge from-layer="364" from-port="2" to-layer="366" to-port="0" />
<edge from-layer="365" from-port="0" to-layer="366" to-port="1" />
<edge from-layer="366" from-port="2" to-layer="368" to-port="0" />
<edge from-layer="367" from-port="0" to-layer="368" to-port="1" />
<edge from-layer="368" from-port="2" to-layer="369" to-port="0" />
<edge from-layer="369" from-port="2" to-layer="370" to-port="0" />
<edge from-layer="369" from-port="2" to-layer="380" to-port="1" />
<edge from-layer="370" from-port="2" to-layer="372" to-port="0" />
<edge from-layer="371" from-port="0" to-layer="372" to-port="1" />
<edge from-layer="372" from-port="2" to-layer="374" to-port="0" />
<edge from-layer="373" from-port="0" to-layer="374" to-port="1" />
<edge from-layer="374" from-port="2" to-layer="375" to-port="0" />
<edge from-layer="375" from-port="2" to-layer="377" to-port="0" />
<edge from-layer="376" from-port="0" to-layer="377" to-port="1" />
<edge from-layer="377" from-port="2" to-layer="379" to-port="0" />
<edge from-layer="378" from-port="0" to-layer="379" to-port="1" />
<edge from-layer="379" from-port="2" to-layer="380" to-port="0" />
<edge from-layer="380" from-port="2" to-layer="414" to-port="0" />
<edge from-layer="381" from-port="0" to-layer="382" to-port="1" />
<edge from-layer="382" from-port="2" to-layer="384" to-port="0" />
<edge from-layer="383" from-port="0" to-layer="384" to-port="1" />
<edge from-layer="384" from-port="2" to-layer="386" to-port="0" />
<edge from-layer="385" from-port="0" to-layer="386" to-port="1" />
<edge from-layer="385" from-port="0" to-layer="403" to-port="1" />
<edge from-layer="385" from-port="0" to-layer="392" to-port="1" />
<edge from-layer="385" from-port="0" to-layer="397" to-port="1" />
<edge from-layer="385" from-port="0" to-layer="408" to-port="1" />
<edge from-layer="386" from-port="2" to-layer="388" to-port="0" />
<edge from-layer="387" from-port="0" to-layer="388" to-port="1" />
<edge from-layer="388" from-port="2" to-layer="390" to-port="0" />
<edge from-layer="389" from-port="0" to-layer="390" to-port="1" />
<edge from-layer="390" from-port="2" to-layer="391" to-port="0" />
<edge from-layer="391" from-port="2" to-layer="392" to-port="0" />
<edge from-layer="391" from-port="2" to-layer="402" to-port="1" />
<edge from-layer="392" from-port="2" to-layer="394" to-port="0" />
<edge from-layer="393" from-port="0" to-layer="394" to-port="1" />
<edge from-layer="394" from-port="2" to-layer="396" to-port="0" />
<edge from-layer="395" from-port="0" to-layer="396" to-port="1" />
<edge from-layer="396" from-port="2" to-layer="397" to-port="0" />
<edge from-layer="397" from-port="2" to-layer="399" to-port="0" />
<edge from-layer="398" from-port="0" to-layer="399" to-port="1" />
<edge from-layer="399" from-port="2" to-layer="401" to-port="0" />
<edge from-layer="400" from-port="0" to-layer="401" to-port="1" />
<edge from-layer="401" from-port="2" to-layer="402" to-port="0" />
<edge from-layer="402" from-port="2" to-layer="403" to-port="0" />
<edge from-layer="402" from-port="2" to-layer="413" to-port="1" />
<edge from-layer="403" from-port="2" to-layer="405" to-port="0" />
<edge from-layer="404" from-port="0" to-layer="405" to-port="1" />
<edge from-layer="405" from-port="2" to-layer="407" to-port="0" />
<edge from-layer="406" from-port="0" to-layer="407" to-port="1" />
<edge from-layer="407" from-port="2" to-layer="408" to-port="0" />
<edge from-layer="408" from-port="2" to-layer="410" to-port="0" />
<edge from-layer="409" from-port="0" to-layer="410" to-port="1" />
<edge from-layer="410" from-port="2" to-layer="412" to-port="0" />
<edge from-layer="411" from-port="0" to-layer="412" to-port="1" />
<edge from-layer="412" from-port="2" to-layer="413" to-port="0" />
<edge from-layer="413" from-port="2" to-layer="414" to-port="1" />
<edge from-layer="414" from-port="2" to-layer="448" to-port="0" />
<edge from-layer="415" from-port="0" to-layer="416" to-port="1" />
<edge from-layer="416" from-port="2" to-layer="418" to-port="0" />
<edge from-layer="417" from-port="0" to-layer="418" to-port="1" />
<edge from-layer="418" from-port="2" to-layer="420" to-port="0" />
<edge from-layer="419" from-port="0" to-layer="420" to-port="1" />
<edge from-layer="419" from-port="0" to-layer="426" to-port="1" />
<edge from-layer="419" from-port="0" to-layer="431" to-port="1" />
<edge from-layer="419" from-port="0" to-layer="437" to-port="1" />
<edge from-layer="419" from-port="0" to-layer="442" to-port="1" />
<edge from-layer="420" from-port="2" to-layer="422" to-port="0" />
<edge from-layer="421" from-port="0" to-layer="422" to-port="1" />
<edge from-layer="422" from-port="2" to-layer="424" to-port="0" />
<edge from-layer="423" from-port="0" to-layer="424" to-port="1" />
<edge from-layer="424" from-port="2" to-layer="425" to-port="0" />
<edge from-layer="425" from-port="2" to-layer="426" to-port="0" />
<edge from-layer="425" from-port="2" to-layer="436" to-port="1" />
<edge from-layer="426" from-port="2" to-layer="428" to-port="0" />
<edge from-layer="427" from-port="0" to-layer="428" to-port="1" />
<edge from-layer="428" from-port="2" to-layer="430" to-port="0" />
<edge from-layer="429" from-port="0" to-layer="430" to-port="1" />
<edge from-layer="430" from-port="2" to-layer="431" to-port="0" />
<edge from-layer="431" from-port="2" to-layer="433" to-port="0" />
<edge from-layer="432" from-port="0" to-layer="433" to-port="1" />
<edge from-layer="433" from-port="2" to-layer="435" to-port="0" />
<edge from-layer="434" from-port="0" to-layer="435" to-port="1" />
<edge from-layer="435" from-port="2" to-layer="436" to-port="0" />
<edge from-layer="436" from-port="2" to-layer="437" to-port="0" />
<edge from-layer="436" from-port="2" to-layer="447" to-port="1" />
<edge from-layer="437" from-port="2" to-layer="439" to-port="0" />
<edge from-layer="438" from-port="0" to-layer="439" to-port="1" />
<edge from-layer="439" from-port="2" to-layer="441" to-port="0" />
<edge from-layer="440" from-port="0" to-layer="441" to-port="1" />
<edge from-layer="441" from-port="2" to-layer="442" to-port="0" />
<edge from-layer="442" from-port="2" to-layer="444" to-port="0" />
<edge from-layer="443" from-port="0" to-layer="444" to-port="1" />
<edge from-layer="444" from-port="2" to-layer="446" to-port="0" />
<edge from-layer="445" from-port="0" to-layer="446" to-port="1" />
<edge from-layer="446" from-port="2" to-layer="447" to-port="0" />
<edge from-layer="447" from-port="2" to-layer="448" to-port="1" />
<edge from-layer="448" from-port="2" to-layer="450" to-port="0" />
<edge from-layer="449" from-port="0" to-layer="450" to-port="1" />
<edge from-layer="450" from-port="2" to-layer="452" to-port="0" />
<edge from-layer="451" from-port="0" to-layer="452" to-port="1" />
<edge from-layer="452" from-port="2" to-layer="454" to-port="0" />
<edge from-layer="453" from-port="0" to-layer="454" to-port="1" />
<edge from-layer="454" from-port="2" to-layer="456" to-port="0" />
<edge from-layer="455" from-port="0" to-layer="456" to-port="1" />
<edge from-layer="456" from-port="2" to-layer="457" to-port="0" />
<edge from-layer="457" from-port="1" to-layer="459" to-port="0" />
<edge from-layer="458" from-port="0" to-layer="459" to-port="1" />
<edge from-layer="459" from-port="2" to-layer="460" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2025.2.0-19140-c01cd93e24d-releases/2025/2" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<optimum>
<optimum_intel_version value="1.24.0" />
<optimum_version value="1.26.1" />
<pytorch_version value="2.7.1" />
<transformers_version value="4.52.4" />
</optimum>
</rt_info>
</net>