lmg-anon commited on
Commit
86f9061
·
1 Parent(s): 49ef932

Upload 50 files

Browse files
Files changed (50) hide show
  1. adapter_config.json +28 -0
  2. adapter_model.bin +3 -0
  3. checkpoint-120/README.md +220 -0
  4. checkpoint-120/adapter_config.json +28 -0
  5. checkpoint-120/adapter_model.safetensors +3 -0
  6. checkpoint-120/optimizer.pt +3 -0
  7. checkpoint-120/rng_state.pth +3 -0
  8. checkpoint-120/scheduler.pt +3 -0
  9. checkpoint-120/trainer_state.json +739 -0
  10. checkpoint-120/training_args.bin +3 -0
  11. checkpoint-190/README.md +220 -0
  12. checkpoint-190/adapter_config.json +28 -0
  13. checkpoint-190/adapter_model.safetensors +3 -0
  14. checkpoint-190/optimizer.pt +3 -0
  15. checkpoint-190/rng_state.pth +3 -0
  16. checkpoint-190/scheduler.pt +3 -0
  17. checkpoint-190/trainer_state.json +1159 -0
  18. checkpoint-190/training_args.bin +3 -0
  19. checkpoint-200/README.md +220 -0
  20. checkpoint-200/adapter_config.json +28 -0
  21. checkpoint-200/adapter_model.safetensors +3 -0
  22. checkpoint-200/optimizer.pt +3 -0
  23. checkpoint-200/rng_state.pth +3 -0
  24. checkpoint-200/scheduler.pt +3 -0
  25. checkpoint-200/trainer_state.json +1219 -0
  26. checkpoint-200/training_args.bin +3 -0
  27. checkpoint-40/README.md +220 -0
  28. checkpoint-40/adapter_config.json +28 -0
  29. checkpoint-40/adapter_model.safetensors +3 -0
  30. checkpoint-40/optimizer.pt +3 -0
  31. checkpoint-40/rng_state.pth +3 -0
  32. checkpoint-40/scheduler.pt +3 -0
  33. checkpoint-40/trainer_state.json +259 -0
  34. checkpoint-40/training_args.bin +3 -0
  35. checkpoint-80/README.md +220 -0
  36. checkpoint-80/adapter_config.json +28 -0
  37. checkpoint-80/adapter_model.safetensors +3 -0
  38. checkpoint-80/optimizer.pt +3 -0
  39. checkpoint-80/rng_state.pth +3 -0
  40. checkpoint-80/scheduler.pt +3 -0
  41. checkpoint-80/trainer_state.json +499 -0
  42. checkpoint-80/training_args.bin +3 -0
  43. checkpoint-90/README.md +220 -0
  44. checkpoint-90/adapter_config.json +28 -0
  45. checkpoint-90/adapter_model.safetensors +3 -0
  46. checkpoint-90/optimizer.pt +3 -0
  47. checkpoint-90/rng_state.pth +3 -0
  48. checkpoint-90/scheduler.pt +3 -0
  49. checkpoint-90/trainer_state.json +559 -0
  50. checkpoint-90/training_args.bin +3 -0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "o_proj",
21
+ "gate_proj",
22
+ "down_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f79513adcdbec489bcae5922568302801faa2dd8cb229d4f8a34888c07a6faab
3
+ size 160069834
checkpoint-120/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b794f816309a7ae9395e4659e941c80ca8a91b6e0b09e526a868ba9f3142d890
3
+ size 159967880
checkpoint-120/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2305266e1e6c759d565002fd6a4fc8d6a8c2c7f49e3864d55ce9feb771839611
3
+ size 80630612
checkpoint-120/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-120/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65d56887428ca405cc745bbbbd7f519276e95c51982e722119e5f11f0b51d490
3
+ size 1064
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,739 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.28776978417266186,
5
+ "eval_steps": 500,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 0.00022698984612511293,
254
+ "loss": 0.751,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 0.00022427130678626507,
260
+ "loss": 0.834,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 0.00022164816032790388,
266
+ "loss": 0.889,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 0.00021911495530055366,
272
+ "loss": 1.0103,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 0.00021666666666666666,
278
+ "loss": 0.8766,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 0.0002142986538536308,
284
+ "loss": 0.8181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 0.0002120066237423687,
290
+ "loss": 0.8754,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 0.0002097865979195684,
296
+ "loss": 0.9038,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 0.00020763488362498048,
302
+ "loss": 0.8646,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 0.00020554804791094464,
308
+ "loss": 0.8836,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 0.0002035228946026736,
314
+ "loss": 0.9962,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 0.0002015564437074637,
320
+ "loss": 0.8835,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 0.00019964591297103414,
326
+ "loss": 0.9196,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 0.00019778870132130996,
332
+ "loss": 0.8995,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 0.00019598237397554634,
338
+ "loss": 1.0178,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 0.00019422464901683895,
344
+ "loss": 0.9395,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 0.00019251338527170498,
350
+ "loss": 0.9882,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 0.00019084657134227863,
356
+ "loss": 0.9274,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 0.00018922231566536414,
362
+ "loss": 0.9517,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 0.0001876388374866284,
368
+ "loss": 0.865,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 0.00018609445865200715,
374
+ "loss": 0.9314,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 0.00018458759613029606,
380
+ "loss": 0.9224,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 0.00018311675519117857,
386
+ "loss": 0.788,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 0.00018168052317185792,
392
+ "loss": 0.9739,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 0.00018027756377319947,
398
+ "loss": 0.9419,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 0.0001789066118330336,
404
+ "loss": 0.8772,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 0.00017756646853014972,
410
+ "loss": 0.8707,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 0.00017625599697765812,
416
+ "loss": 0.8089,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 0.00017497411816890378,
422
+ "loss": 0.9303,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 0.00017371980724307585,
428
+ "loss": 0.9161,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 0.00017249209004113945,
434
+ "loss": 0.9064,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 0.00017129003992578723,
440
+ "loss": 1.0988,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 0.00017011277484181944,
446
+ "loss": 0.9804,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 0.0001689594545957618,
452
+ "loss": 0.8382,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 0.00016782927833565472,
458
+ "loss": 0.9632,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 0.00016672148221383754,
464
+ "loss": 0.9494,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 0.00016563533721722828,
470
+ "loss": 0.9253,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 0.0001645701471510958,
476
+ "loss": 0.9143,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 0.00016352524676365398,
482
+ "loss": 0.8907,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 0.0001625,
488
+ "loss": 0.9748,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 0.00016149379837498482,
494
+ "loss": 0.893,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.2,
499
+ "learning_rate": 0.00016050605945555833,
500
+ "loss": 0.839,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.2,
505
+ "learning_rate": 0.0001595362254439902,
506
+ "loss": 0.9276,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 0.00015858376185413662,
512
+ "loss": 0.8758,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 0.00015764815627361642,
518
+ "loss": 0.9125,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.21,
523
+ "learning_rate": 0.00015672891720538393,
524
+ "loss": 0.955,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.21,
529
+ "learning_rate": 0.00015582557298274985,
530
+ "loss": 0.9104,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 0.00015493767075240873,
536
+ "loss": 0.8861,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 0.0001540647755204926,
542
+ "loss": 0.9693,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.22,
547
+ "learning_rate": 0.0001532064692570853,
548
+ "loss": 0.7245,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.22,
553
+ "learning_rate": 0.000152362350055011,
554
+ "loss": 0.7523,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.22,
559
+ "learning_rate": 0.000151532031339051,
560
+ "loss": 0.8522,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.22,
565
+ "learning_rate": 0.00015071514112205468,
566
+ "loss": 0.9273,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.23,
571
+ "learning_rate": 0.0001499113213046938,
572
+ "loss": 1.0303,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.23,
577
+ "learning_rate": 0.00014912022701586513,
578
+ "loss": 0.9273,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.23,
583
+ "learning_rate": 0.00014834152599098248,
584
+ "loss": 0.9071,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.23,
589
+ "learning_rate": 0.00014757489798561242,
590
+ "loss": 0.954,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.24,
595
+ "learning_rate": 0.00014682003422210332,
596
+ "loss": 0.7897,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.24,
601
+ "learning_rate": 0.00014607663686703578,
602
+ "loss": 0.9045,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.24,
607
+ "learning_rate": 0.00014534441853748632,
608
+ "loss": 0.7919,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.24,
613
+ "learning_rate": 0.00014462310183424506,
614
+ "loss": 0.7449,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.24,
619
+ "learning_rate": 0.0001439124189002655,
620
+ "loss": 0.8953,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.25,
625
+ "learning_rate": 0.0001432121110027503,
626
+ "loss": 0.974,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.25,
631
+ "learning_rate": 0.00014252192813739225,
632
+ "loss": 0.959,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.25,
637
+ "learning_rate": 0.00014184162865339505,
638
+ "loss": 0.8767,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.25,
643
+ "learning_rate": 0.00014117097889799755,
644
+ "loss": 0.9206,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.26,
649
+ "learning_rate": 0.000140509752879313,
650
+ "loss": 0.8096,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.26,
655
+ "learning_rate": 0.00013985773194637893,
656
+ "loss": 0.9726,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.26,
661
+ "learning_rate": 0.00013921470448538878,
662
+ "loss": 0.7764,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.26,
667
+ "learning_rate": 0.00013858046563114675,
668
+ "loss": 0.8414,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.27,
673
+ "learning_rate": 0.0001379548169928529,
674
+ "loss": 0.9365,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.27,
679
+ "learning_rate": 0.00013733756639338393,
680
+ "loss": 0.9857,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.27,
685
+ "learning_rate": 0.00013672852762129314,
686
+ "loss": 0.8209,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.27,
691
+ "learning_rate": 0.00013612752019480102,
692
+ "loss": 0.9954,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.28,
697
+ "learning_rate": 0.0001355343691370986,
698
+ "loss": 0.9425,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.28,
703
+ "learning_rate": 0.00013494890476232745,
704
+ "loss": 0.9199,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.28,
709
+ "learning_rate": 0.0001343709624716425,
710
+ "loss": 1.0011,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.28,
715
+ "learning_rate": 0.00013380038255880045,
716
+ "loss": 0.9335,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.29,
721
+ "learning_rate": 0.000133237010024753,
722
+ "loss": 1.0612,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.29,
727
+ "learning_rate": 0.0001326806944007555,
728
+ "loss": 0.8794,
729
+ "step": 120
730
+ }
731
+ ],
732
+ "logging_steps": 1,
733
+ "max_steps": 417,
734
+ "num_train_epochs": 1,
735
+ "save_steps": 10,
736
+ "total_flos": 3.891394643755008e+16,
737
+ "trial_name": null,
738
+ "trial_params": null
739
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536
checkpoint-190/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-190/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-190/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b1782493354a771246d082dc93657ab22db0ff3ddd5df17582fee11d00146f9
3
+ size 159967880
checkpoint-190/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57486841c0688ed8ffaa2b58024863dbb4ba387677b7d20b6d188a9d6d450e01
3
+ size 80630612
checkpoint-190/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-190/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdcbbcb76fd3462a8f7147c20ae6d636210dbe8343e20495ae55ada97cf0e38a
3
+ size 1064
checkpoint-190/trainer_state.json ADDED
@@ -0,0 +1,1159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4556354916067146,
5
+ "eval_steps": 500,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 0.00022698984612511293,
254
+ "loss": 0.751,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 0.00022427130678626507,
260
+ "loss": 0.834,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 0.00022164816032790388,
266
+ "loss": 0.889,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 0.00021911495530055366,
272
+ "loss": 1.0103,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 0.00021666666666666666,
278
+ "loss": 0.8766,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 0.0002142986538536308,
284
+ "loss": 0.8181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 0.0002120066237423687,
290
+ "loss": 0.8754,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 0.0002097865979195684,
296
+ "loss": 0.9038,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 0.00020763488362498048,
302
+ "loss": 0.8646,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 0.00020554804791094464,
308
+ "loss": 0.8836,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 0.0002035228946026736,
314
+ "loss": 0.9962,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 0.0002015564437074637,
320
+ "loss": 0.8835,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 0.00019964591297103414,
326
+ "loss": 0.9196,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 0.00019778870132130996,
332
+ "loss": 0.8995,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 0.00019598237397554634,
338
+ "loss": 1.0178,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 0.00019422464901683895,
344
+ "loss": 0.9395,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 0.00019251338527170498,
350
+ "loss": 0.9882,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 0.00019084657134227863,
356
+ "loss": 0.9274,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 0.00018922231566536414,
362
+ "loss": 0.9517,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 0.0001876388374866284,
368
+ "loss": 0.865,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 0.00018609445865200715,
374
+ "loss": 0.9314,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 0.00018458759613029606,
380
+ "loss": 0.9224,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 0.00018311675519117857,
386
+ "loss": 0.788,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 0.00018168052317185792,
392
+ "loss": 0.9739,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 0.00018027756377319947,
398
+ "loss": 0.9419,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 0.0001789066118330336,
404
+ "loss": 0.8772,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 0.00017756646853014972,
410
+ "loss": 0.8707,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 0.00017625599697765812,
416
+ "loss": 0.8089,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 0.00017497411816890378,
422
+ "loss": 0.9303,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 0.00017371980724307585,
428
+ "loss": 0.9161,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 0.00017249209004113945,
434
+ "loss": 0.9064,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 0.00017129003992578723,
440
+ "loss": 1.0988,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 0.00017011277484181944,
446
+ "loss": 0.9804,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 0.0001689594545957618,
452
+ "loss": 0.8382,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 0.00016782927833565472,
458
+ "loss": 0.9632,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 0.00016672148221383754,
464
+ "loss": 0.9494,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 0.00016563533721722828,
470
+ "loss": 0.9253,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 0.0001645701471510958,
476
+ "loss": 0.9143,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 0.00016352524676365398,
482
+ "loss": 0.8907,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 0.0001625,
488
+ "loss": 0.9748,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 0.00016149379837498482,
494
+ "loss": 0.893,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.2,
499
+ "learning_rate": 0.00016050605945555833,
500
+ "loss": 0.839,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.2,
505
+ "learning_rate": 0.0001595362254439902,
506
+ "loss": 0.9276,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 0.00015858376185413662,
512
+ "loss": 0.8758,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 0.00015764815627361642,
518
+ "loss": 0.9125,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.21,
523
+ "learning_rate": 0.00015672891720538393,
524
+ "loss": 0.955,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.21,
529
+ "learning_rate": 0.00015582557298274985,
530
+ "loss": 0.9104,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 0.00015493767075240873,
536
+ "loss": 0.8861,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 0.0001540647755204926,
542
+ "loss": 0.9693,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.22,
547
+ "learning_rate": 0.0001532064692570853,
548
+ "loss": 0.7245,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.22,
553
+ "learning_rate": 0.000152362350055011,
554
+ "loss": 0.7523,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.22,
559
+ "learning_rate": 0.000151532031339051,
560
+ "loss": 0.8522,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.22,
565
+ "learning_rate": 0.00015071514112205468,
566
+ "loss": 0.9273,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.23,
571
+ "learning_rate": 0.0001499113213046938,
572
+ "loss": 1.0303,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.23,
577
+ "learning_rate": 0.00014912022701586513,
578
+ "loss": 0.9273,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.23,
583
+ "learning_rate": 0.00014834152599098248,
584
+ "loss": 0.9071,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.23,
589
+ "learning_rate": 0.00014757489798561242,
590
+ "loss": 0.954,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.24,
595
+ "learning_rate": 0.00014682003422210332,
596
+ "loss": 0.7897,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.24,
601
+ "learning_rate": 0.00014607663686703578,
602
+ "loss": 0.9045,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.24,
607
+ "learning_rate": 0.00014534441853748632,
608
+ "loss": 0.7919,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.24,
613
+ "learning_rate": 0.00014462310183424506,
614
+ "loss": 0.7449,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.24,
619
+ "learning_rate": 0.0001439124189002655,
620
+ "loss": 0.8953,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.25,
625
+ "learning_rate": 0.0001432121110027503,
626
+ "loss": 0.974,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.25,
631
+ "learning_rate": 0.00014252192813739225,
632
+ "loss": 0.959,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.25,
637
+ "learning_rate": 0.00014184162865339505,
638
+ "loss": 0.8767,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.25,
643
+ "learning_rate": 0.00014117097889799755,
644
+ "loss": 0.9206,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.26,
649
+ "learning_rate": 0.000140509752879313,
650
+ "loss": 0.8096,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.26,
655
+ "learning_rate": 0.00013985773194637893,
656
+ "loss": 0.9726,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.26,
661
+ "learning_rate": 0.00013921470448538878,
662
+ "loss": 0.7764,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.26,
667
+ "learning_rate": 0.00013858046563114675,
668
+ "loss": 0.8414,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.27,
673
+ "learning_rate": 0.0001379548169928529,
674
+ "loss": 0.9365,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.27,
679
+ "learning_rate": 0.00013733756639338393,
680
+ "loss": 0.9857,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.27,
685
+ "learning_rate": 0.00013672852762129314,
686
+ "loss": 0.8209,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.27,
691
+ "learning_rate": 0.00013612752019480102,
692
+ "loss": 0.9954,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.28,
697
+ "learning_rate": 0.0001355343691370986,
698
+ "loss": 0.9425,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.28,
703
+ "learning_rate": 0.00013494890476232745,
704
+ "loss": 0.9199,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.28,
709
+ "learning_rate": 0.0001343709624716425,
710
+ "loss": 1.0011,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.28,
715
+ "learning_rate": 0.00013380038255880045,
716
+ "loss": 0.9335,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.29,
721
+ "learning_rate": 0.000133237010024753,
722
+ "loss": 1.0612,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.29,
727
+ "learning_rate": 0.0001326806944007555,
728
+ "loss": 0.8794,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.29,
733
+ "learning_rate": 0.00013213128957953303,
734
+ "loss": 0.8557,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.29,
739
+ "learning_rate": 0.00013158865365407385,
740
+ "loss": 0.931,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.29,
745
+ "learning_rate": 0.00013105264876364566,
746
+ "loss": 0.9648,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.3,
751
+ "learning_rate": 0.00013052314094665608,
752
+ "loss": 0.8448,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.3,
757
+ "learning_rate": 0.00013,
758
+ "loss": 0.9247,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.3,
763
+ "learning_rate": 0.0001294830993445593,
764
+ "loss": 0.9537,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.3,
769
+ "learning_rate": 0.00012897231589653857,
770
+ "loss": 0.8049,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.31,
775
+ "learning_rate": 0.0001284675299443404,
776
+ "loss": 0.8177,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.31,
781
+ "learning_rate": 0.00012796862503070062,
782
+ "loss": 0.9717,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.31,
787
+ "learning_rate": 0.00012747548783981962,
788
+ "loss": 0.8813,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.31,
793
+ "learning_rate": 0.00012698800808924157,
794
+ "loss": 0.9708,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.32,
799
+ "learning_rate": 0.00012650607842624748,
800
+ "loss": 0.8776,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.32,
805
+ "learning_rate": 0.0001260295943285407,
806
+ "loss": 0.8564,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.32,
811
+ "learning_rate": 0.00012555845400901656,
812
+ "loss": 0.8793,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.32,
817
+ "learning_rate": 0.0001250925583244189,
818
+ "loss": 0.9288,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.33,
823
+ "learning_rate": 0.00012463181068769768,
824
+ "loss": 0.9407,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.33,
829
+ "learning_rate": 0.0001241761169838914,
830
+ "loss": 0.9746,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.33,
835
+ "learning_rate": 0.00012372538548936814,
836
+ "loss": 1.0109,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.33,
841
+ "learning_rate": 0.00012327952679426827,
842
+ "loss": 1.0695,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.34,
847
+ "learning_rate": 0.00012283845372799884,
848
+ "loss": 0.9092,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.34,
853
+ "learning_rate": 0.00012240208128764027,
854
+ "loss": 0.7535,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.34,
859
+ "learning_rate": 0.00012197032656913024,
860
+ "loss": 0.7952,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.34,
865
+ "learning_rate": 0.00012154310870109942,
866
+ "loss": 0.8747,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.35,
871
+ "learning_rate": 0.0001211203487812386,
872
+ "loss": 0.823,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.35,
877
+ "learning_rate": 0.0001207019698150837,
878
+ "loss": 0.838,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.35,
883
+ "learning_rate": 0.00012028789665711085,
884
+ "loss": 0.8352,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.35,
889
+ "learning_rate": 0.00011987805595403907,
890
+ "loss": 0.9483,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.35,
895
+ "learning_rate": 0.00011947237609024377,
896
+ "loss": 0.8841,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.36,
901
+ "learning_rate": 0.00011907078713518815,
902
+ "loss": 1.0176,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.36,
907
+ "learning_rate": 0.00011867322079278597,
908
+ "loss": 0.9113,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.36,
913
+ "learning_rate": 0.00011827961035261132,
914
+ "loss": 0.8683,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.36,
919
+ "learning_rate": 0.0001178898906428769,
920
+ "loss": 0.8158,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.37,
925
+ "learning_rate": 0.0001175039979851054,
926
+ "loss": 0.8146,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.37,
931
+ "learning_rate": 0.00011712187015042266,
932
+ "loss": 0.8513,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.37,
937
+ "learning_rate": 0.00011674344631740369,
938
+ "loss": 0.8071,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.37,
943
+ "learning_rate": 0.00011636866703140783,
944
+ "loss": 0.8923,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.38,
949
+ "learning_rate": 0.00011599747416534057,
950
+ "loss": 0.9082,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.38,
955
+ "learning_rate": 0.00011562981088178324,
956
+ "loss": 0.8323,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.38,
961
+ "learning_rate": 0.00011526562159643515,
962
+ "loss": 0.8079,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.38,
967
+ "learning_rate": 0.00011490485194281395,
968
+ "loss": 0.8623,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.39,
973
+ "learning_rate": 0.00011454744873816422,
974
+ "loss": 0.8465,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.39,
979
+ "learning_rate": 0.0001141933599505248,
980
+ "loss": 0.9027,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.39,
985
+ "learning_rate": 0.00011384253466690954,
986
+ "loss": 0.907,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.39,
991
+ "learning_rate": 0.00011349492306255647,
992
+ "loss": 0.9152,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.4,
997
+ "learning_rate": 0.0001131504763712036,
998
+ "loss": 0.7418,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.4,
1003
+ "learning_rate": 0.00011280914685635128,
1004
+ "loss": 0.8328,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.4,
1009
+ "learning_rate": 0.0001124708877834722,
1010
+ "loss": 0.9287,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.4,
1015
+ "learning_rate": 0.00011213565339313254,
1016
+ "loss": 0.7967,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.41,
1021
+ "learning_rate": 0.00011180339887498949,
1022
+ "loss": 0.84,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.41,
1027
+ "learning_rate": 0.00011147408034263073,
1028
+ "loss": 0.8149,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.41,
1033
+ "learning_rate": 0.00011114765480922503,
1034
+ "loss": 0.8555,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.41,
1039
+ "learning_rate": 0.00011082408016395194,
1040
+ "loss": 0.814,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.41,
1045
+ "learning_rate": 0.00011050331514918246,
1046
+ "loss": 0.8139,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.42,
1051
+ "learning_rate": 0.0001101853193383817,
1052
+ "loss": 0.885,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.42,
1057
+ "learning_rate": 0.00010987005311470715,
1058
+ "loss": 0.7682,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.42,
1063
+ "learning_rate": 0.00010955747765027683,
1064
+ "loss": 0.8266,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.42,
1069
+ "learning_rate": 0.00010924755488608232,
1070
+ "loss": 0.8699,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.43,
1075
+ "learning_rate": 0.00010894024751252352,
1076
+ "loss": 0.957,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.43,
1081
+ "learning_rate": 0.00010863551895054227,
1082
+ "loss": 0.854,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.43,
1087
+ "learning_rate": 0.00010833333333333333,
1088
+ "loss": 0.7239,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.43,
1093
+ "learning_rate": 0.00010803365548861171,
1094
+ "loss": 0.7825,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.44,
1099
+ "learning_rate": 0.00010773645092141682,
1100
+ "loss": 0.8531,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.44,
1105
+ "learning_rate": 0.00010744168579743401,
1106
+ "loss": 0.7602,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.44,
1111
+ "learning_rate": 0.0001071493269268154,
1112
+ "loss": 0.8768,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.44,
1117
+ "learning_rate": 0.00010685934174848223,
1118
+ "loss": 0.8294,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.45,
1123
+ "learning_rate": 0.00010657169831489234,
1124
+ "loss": 0.8872,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.45,
1129
+ "learning_rate": 0.0001062863652772559,
1130
+ "loss": 0.7016,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.45,
1135
+ "learning_rate": 0.00010600331187118435,
1136
+ "loss": 0.8942,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.45,
1141
+ "learning_rate": 0.00010572250790275775,
1142
+ "loss": 0.7416,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.46,
1147
+ "learning_rate": 0.00010544392373499565,
1148
+ "loss": 0.8104,
1149
+ "step": 190
1150
+ }
1151
+ ],
1152
+ "logging_steps": 1,
1153
+ "max_steps": 417,
1154
+ "num_train_epochs": 1,
1155
+ "save_steps": 10,
1156
+ "total_flos": 6.162417152478413e+16,
1157
+ "trial_name": null,
1158
+ "trial_params": null
1159
+ }
checkpoint-190/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536
checkpoint-200/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79584014796fb14dcc8275c797d29df72f7b2dc5cc4b7b8a2fbfa29fdbc02ca3
3
+ size 159967880
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1175f1558372bc8497b475ca5b1f9f8b7d3c06b01c5ddadbf6197f16fd66e4c
3
+ size 80630612
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa613265bd9842961d3a0187165a5848341c0e2d75f3b3120add96d3b9bbb5af
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.47961630695443647,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 0.00022698984612511293,
254
+ "loss": 0.751,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 0.00022427130678626507,
260
+ "loss": 0.834,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 0.00022164816032790388,
266
+ "loss": 0.889,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 0.00021911495530055366,
272
+ "loss": 1.0103,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 0.00021666666666666666,
278
+ "loss": 0.8766,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 0.0002142986538536308,
284
+ "loss": 0.8181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 0.0002120066237423687,
290
+ "loss": 0.8754,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 0.0002097865979195684,
296
+ "loss": 0.9038,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 0.00020763488362498048,
302
+ "loss": 0.8646,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 0.00020554804791094464,
308
+ "loss": 0.8836,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 0.0002035228946026736,
314
+ "loss": 0.9962,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 0.0002015564437074637,
320
+ "loss": 0.8835,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 0.00019964591297103414,
326
+ "loss": 0.9196,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 0.00019778870132130996,
332
+ "loss": 0.8995,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 0.00019598237397554634,
338
+ "loss": 1.0178,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 0.00019422464901683895,
344
+ "loss": 0.9395,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 0.00019251338527170498,
350
+ "loss": 0.9882,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 0.00019084657134227863,
356
+ "loss": 0.9274,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 0.00018922231566536414,
362
+ "loss": 0.9517,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 0.0001876388374866284,
368
+ "loss": 0.865,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 0.00018609445865200715,
374
+ "loss": 0.9314,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 0.00018458759613029606,
380
+ "loss": 0.9224,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 0.00018311675519117857,
386
+ "loss": 0.788,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 0.00018168052317185792,
392
+ "loss": 0.9739,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 0.00018027756377319947,
398
+ "loss": 0.9419,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 0.0001789066118330336,
404
+ "loss": 0.8772,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 0.00017756646853014972,
410
+ "loss": 0.8707,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 0.00017625599697765812,
416
+ "loss": 0.8089,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 0.00017497411816890378,
422
+ "loss": 0.9303,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 0.00017371980724307585,
428
+ "loss": 0.9161,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 0.00017249209004113945,
434
+ "loss": 0.9064,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 0.00017129003992578723,
440
+ "loss": 1.0988,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 0.00017011277484181944,
446
+ "loss": 0.9804,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 0.0001689594545957618,
452
+ "loss": 0.8382,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 0.00016782927833565472,
458
+ "loss": 0.9632,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 0.00016672148221383754,
464
+ "loss": 0.9494,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 0.00016563533721722828,
470
+ "loss": 0.9253,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 0.0001645701471510958,
476
+ "loss": 0.9143,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 0.00016352524676365398,
482
+ "loss": 0.8907,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 0.0001625,
488
+ "loss": 0.9748,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 0.00016149379837498482,
494
+ "loss": 0.893,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.2,
499
+ "learning_rate": 0.00016050605945555833,
500
+ "loss": 0.839,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.2,
505
+ "learning_rate": 0.0001595362254439902,
506
+ "loss": 0.9276,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 0.00015858376185413662,
512
+ "loss": 0.8758,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 0.00015764815627361642,
518
+ "loss": 0.9125,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.21,
523
+ "learning_rate": 0.00015672891720538393,
524
+ "loss": 0.955,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.21,
529
+ "learning_rate": 0.00015582557298274985,
530
+ "loss": 0.9104,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 0.00015493767075240873,
536
+ "loss": 0.8861,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 0.0001540647755204926,
542
+ "loss": 0.9693,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.22,
547
+ "learning_rate": 0.0001532064692570853,
548
+ "loss": 0.7245,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.22,
553
+ "learning_rate": 0.000152362350055011,
554
+ "loss": 0.7523,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.22,
559
+ "learning_rate": 0.000151532031339051,
560
+ "loss": 0.8522,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.22,
565
+ "learning_rate": 0.00015071514112205468,
566
+ "loss": 0.9273,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.23,
571
+ "learning_rate": 0.0001499113213046938,
572
+ "loss": 1.0303,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.23,
577
+ "learning_rate": 0.00014912022701586513,
578
+ "loss": 0.9273,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.23,
583
+ "learning_rate": 0.00014834152599098248,
584
+ "loss": 0.9071,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.23,
589
+ "learning_rate": 0.00014757489798561242,
590
+ "loss": 0.954,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.24,
595
+ "learning_rate": 0.00014682003422210332,
596
+ "loss": 0.7897,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.24,
601
+ "learning_rate": 0.00014607663686703578,
602
+ "loss": 0.9045,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.24,
607
+ "learning_rate": 0.00014534441853748632,
608
+ "loss": 0.7919,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.24,
613
+ "learning_rate": 0.00014462310183424506,
614
+ "loss": 0.7449,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.24,
619
+ "learning_rate": 0.0001439124189002655,
620
+ "loss": 0.8953,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.25,
625
+ "learning_rate": 0.0001432121110027503,
626
+ "loss": 0.974,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.25,
631
+ "learning_rate": 0.00014252192813739225,
632
+ "loss": 0.959,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.25,
637
+ "learning_rate": 0.00014184162865339505,
638
+ "loss": 0.8767,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.25,
643
+ "learning_rate": 0.00014117097889799755,
644
+ "loss": 0.9206,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.26,
649
+ "learning_rate": 0.000140509752879313,
650
+ "loss": 0.8096,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.26,
655
+ "learning_rate": 0.00013985773194637893,
656
+ "loss": 0.9726,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.26,
661
+ "learning_rate": 0.00013921470448538878,
662
+ "loss": 0.7764,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.26,
667
+ "learning_rate": 0.00013858046563114675,
668
+ "loss": 0.8414,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.27,
673
+ "learning_rate": 0.0001379548169928529,
674
+ "loss": 0.9365,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.27,
679
+ "learning_rate": 0.00013733756639338393,
680
+ "loss": 0.9857,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.27,
685
+ "learning_rate": 0.00013672852762129314,
686
+ "loss": 0.8209,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.27,
691
+ "learning_rate": 0.00013612752019480102,
692
+ "loss": 0.9954,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.28,
697
+ "learning_rate": 0.0001355343691370986,
698
+ "loss": 0.9425,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.28,
703
+ "learning_rate": 0.00013494890476232745,
704
+ "loss": 0.9199,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.28,
709
+ "learning_rate": 0.0001343709624716425,
710
+ "loss": 1.0011,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.28,
715
+ "learning_rate": 0.00013380038255880045,
716
+ "loss": 0.9335,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.29,
721
+ "learning_rate": 0.000133237010024753,
722
+ "loss": 1.0612,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.29,
727
+ "learning_rate": 0.0001326806944007555,
728
+ "loss": 0.8794,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.29,
733
+ "learning_rate": 0.00013213128957953303,
734
+ "loss": 0.8557,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.29,
739
+ "learning_rate": 0.00013158865365407385,
740
+ "loss": 0.931,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.29,
745
+ "learning_rate": 0.00013105264876364566,
746
+ "loss": 0.9648,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.3,
751
+ "learning_rate": 0.00013052314094665608,
752
+ "loss": 0.8448,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.3,
757
+ "learning_rate": 0.00013,
758
+ "loss": 0.9247,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.3,
763
+ "learning_rate": 0.0001294830993445593,
764
+ "loss": 0.9537,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.3,
769
+ "learning_rate": 0.00012897231589653857,
770
+ "loss": 0.8049,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.31,
775
+ "learning_rate": 0.0001284675299443404,
776
+ "loss": 0.8177,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.31,
781
+ "learning_rate": 0.00012796862503070062,
782
+ "loss": 0.9717,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.31,
787
+ "learning_rate": 0.00012747548783981962,
788
+ "loss": 0.8813,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.31,
793
+ "learning_rate": 0.00012698800808924157,
794
+ "loss": 0.9708,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.32,
799
+ "learning_rate": 0.00012650607842624748,
800
+ "loss": 0.8776,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.32,
805
+ "learning_rate": 0.0001260295943285407,
806
+ "loss": 0.8564,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.32,
811
+ "learning_rate": 0.00012555845400901656,
812
+ "loss": 0.8793,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.32,
817
+ "learning_rate": 0.0001250925583244189,
818
+ "loss": 0.9288,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.33,
823
+ "learning_rate": 0.00012463181068769768,
824
+ "loss": 0.9407,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.33,
829
+ "learning_rate": 0.0001241761169838914,
830
+ "loss": 0.9746,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.33,
835
+ "learning_rate": 0.00012372538548936814,
836
+ "loss": 1.0109,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.33,
841
+ "learning_rate": 0.00012327952679426827,
842
+ "loss": 1.0695,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.34,
847
+ "learning_rate": 0.00012283845372799884,
848
+ "loss": 0.9092,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.34,
853
+ "learning_rate": 0.00012240208128764027,
854
+ "loss": 0.7535,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.34,
859
+ "learning_rate": 0.00012197032656913024,
860
+ "loss": 0.7952,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.34,
865
+ "learning_rate": 0.00012154310870109942,
866
+ "loss": 0.8747,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.35,
871
+ "learning_rate": 0.0001211203487812386,
872
+ "loss": 0.823,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.35,
877
+ "learning_rate": 0.0001207019698150837,
878
+ "loss": 0.838,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.35,
883
+ "learning_rate": 0.00012028789665711085,
884
+ "loss": 0.8352,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.35,
889
+ "learning_rate": 0.00011987805595403907,
890
+ "loss": 0.9483,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.35,
895
+ "learning_rate": 0.00011947237609024377,
896
+ "loss": 0.8841,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.36,
901
+ "learning_rate": 0.00011907078713518815,
902
+ "loss": 1.0176,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.36,
907
+ "learning_rate": 0.00011867322079278597,
908
+ "loss": 0.9113,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.36,
913
+ "learning_rate": 0.00011827961035261132,
914
+ "loss": 0.8683,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.36,
919
+ "learning_rate": 0.0001178898906428769,
920
+ "loss": 0.8158,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.37,
925
+ "learning_rate": 0.0001175039979851054,
926
+ "loss": 0.8146,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.37,
931
+ "learning_rate": 0.00011712187015042266,
932
+ "loss": 0.8513,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.37,
937
+ "learning_rate": 0.00011674344631740369,
938
+ "loss": 0.8071,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.37,
943
+ "learning_rate": 0.00011636866703140783,
944
+ "loss": 0.8923,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.38,
949
+ "learning_rate": 0.00011599747416534057,
950
+ "loss": 0.9082,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.38,
955
+ "learning_rate": 0.00011562981088178324,
956
+ "loss": 0.8323,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.38,
961
+ "learning_rate": 0.00011526562159643515,
962
+ "loss": 0.8079,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.38,
967
+ "learning_rate": 0.00011490485194281395,
968
+ "loss": 0.8623,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.39,
973
+ "learning_rate": 0.00011454744873816422,
974
+ "loss": 0.8465,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.39,
979
+ "learning_rate": 0.0001141933599505248,
980
+ "loss": 0.9027,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.39,
985
+ "learning_rate": 0.00011384253466690954,
986
+ "loss": 0.907,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.39,
991
+ "learning_rate": 0.00011349492306255647,
992
+ "loss": 0.9152,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.4,
997
+ "learning_rate": 0.0001131504763712036,
998
+ "loss": 0.7418,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.4,
1003
+ "learning_rate": 0.00011280914685635128,
1004
+ "loss": 0.8328,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.4,
1009
+ "learning_rate": 0.0001124708877834722,
1010
+ "loss": 0.9287,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.4,
1015
+ "learning_rate": 0.00011213565339313254,
1016
+ "loss": 0.7967,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.41,
1021
+ "learning_rate": 0.00011180339887498949,
1022
+ "loss": 0.84,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.41,
1027
+ "learning_rate": 0.00011147408034263073,
1028
+ "loss": 0.8149,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.41,
1033
+ "learning_rate": 0.00011114765480922503,
1034
+ "loss": 0.8555,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.41,
1039
+ "learning_rate": 0.00011082408016395194,
1040
+ "loss": 0.814,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.41,
1045
+ "learning_rate": 0.00011050331514918246,
1046
+ "loss": 0.8139,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.42,
1051
+ "learning_rate": 0.0001101853193383817,
1052
+ "loss": 0.885,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.42,
1057
+ "learning_rate": 0.00010987005311470715,
1058
+ "loss": 0.7682,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.42,
1063
+ "learning_rate": 0.00010955747765027683,
1064
+ "loss": 0.8266,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.42,
1069
+ "learning_rate": 0.00010924755488608232,
1070
+ "loss": 0.8699,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.43,
1075
+ "learning_rate": 0.00010894024751252352,
1076
+ "loss": 0.957,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.43,
1081
+ "learning_rate": 0.00010863551895054227,
1082
+ "loss": 0.854,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.43,
1087
+ "learning_rate": 0.00010833333333333333,
1088
+ "loss": 0.7239,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.43,
1093
+ "learning_rate": 0.00010803365548861171,
1094
+ "loss": 0.7825,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.44,
1099
+ "learning_rate": 0.00010773645092141682,
1100
+ "loss": 0.8531,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.44,
1105
+ "learning_rate": 0.00010744168579743401,
1106
+ "loss": 0.7602,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.44,
1111
+ "learning_rate": 0.0001071493269268154,
1112
+ "loss": 0.8768,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.44,
1117
+ "learning_rate": 0.00010685934174848223,
1118
+ "loss": 0.8294,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.45,
1123
+ "learning_rate": 0.00010657169831489234,
1124
+ "loss": 0.8872,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.45,
1129
+ "learning_rate": 0.0001062863652772559,
1130
+ "loss": 0.7016,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.45,
1135
+ "learning_rate": 0.00010600331187118435,
1136
+ "loss": 0.8942,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.45,
1141
+ "learning_rate": 0.00010572250790275775,
1142
+ "loss": 0.7416,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.46,
1147
+ "learning_rate": 0.00010544392373499565,
1148
+ "loss": 0.8104,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.46,
1153
+ "learning_rate": 0.0001051675302747182,
1154
+ "loss": 0.8349,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.46,
1159
+ "learning_rate": 0.0001048932989597842,
1160
+ "loss": 0.9013,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.46,
1165
+ "learning_rate": 0.00010462120174669319,
1166
+ "loss": 0.7646,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.47,
1171
+ "learning_rate": 0.00010435121109853953,
1172
+ "loss": 0.8087,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.47,
1177
+ "learning_rate": 0.00010408329997330662,
1178
+ "loss": 0.9798,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.47,
1183
+ "learning_rate": 0.00010381744181249024,
1184
+ "loss": 0.7266,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.47,
1189
+ "learning_rate": 0.0001035536105300395,
1190
+ "loss": 0.8502,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.47,
1195
+ "learning_rate": 0.00010329178050160582,
1196
+ "loss": 0.7797,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.48,
1201
+ "learning_rate": 0.00010303192655408924,
1202
+ "loss": 0.7328,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.48,
1207
+ "learning_rate": 0.00010277402395547232,
1208
+ "loss": 0.7916,
1209
+ "step": 200
1210
+ }
1211
+ ],
1212
+ "logging_steps": 1,
1213
+ "max_steps": 417,
1214
+ "num_train_epochs": 1,
1215
+ "save_steps": 10,
1216
+ "total_flos": 6.487869967879373e+16,
1217
+ "trial_name": null,
1218
+ "trial_params": null
1219
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536
checkpoint-40/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-40/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-40/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d879b575ccbc5870446f4660d9f84e87e57d8943adb6905d66d7b2416a58cd2
3
+ size 159967880
checkpoint-40/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf198c2832597a6e8d36b6dbdbd6ba07ddd67e809dbe44b9c8cde5a9d16b77f
3
+ size 80630612
checkpoint-40/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-40/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1a123c2e2869cfd4ae8b10396584d8f5b9752e5427db6f1a6efa11fcc47bfcd
3
+ size 1064
checkpoint-40/trainer_state.json ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.09592326139088729,
5
+ "eval_steps": 500,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ }
251
+ ],
252
+ "logging_steps": 1,
253
+ "max_steps": 417,
254
+ "num_train_epochs": 1,
255
+ "save_steps": 10,
256
+ "total_flos": 1.2924943770845184e+16,
257
+ "trial_name": null,
258
+ "trial_params": null
259
+ }
checkpoint-40/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536
checkpoint-80/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-80/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-80/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9f21852fc41174f2b5b87cccc6d4a5d07a4660480a9d9fdd6ebc875883cf30d
3
+ size 159967880
checkpoint-80/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53f79c6b8e0d8ad36a77715fff5512b2deddade328c167b641b9dfae8933876b
3
+ size 80630612
checkpoint-80/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-80/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88790c0dfb035758d1c04e3296c3d510b282a3a11865d663fde0aa5d8dc72699
3
+ size 1064
checkpoint-80/trainer_state.json ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.19184652278177458,
5
+ "eval_steps": 500,
6
+ "global_step": 80,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 0.00022698984612511293,
254
+ "loss": 0.751,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 0.00022427130678626507,
260
+ "loss": 0.834,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 0.00022164816032790388,
266
+ "loss": 0.889,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 0.00021911495530055366,
272
+ "loss": 1.0103,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 0.00021666666666666666,
278
+ "loss": 0.8766,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 0.0002142986538536308,
284
+ "loss": 0.8181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 0.0002120066237423687,
290
+ "loss": 0.8754,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 0.0002097865979195684,
296
+ "loss": 0.9038,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 0.00020763488362498048,
302
+ "loss": 0.8646,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 0.00020554804791094464,
308
+ "loss": 0.8836,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 0.0002035228946026736,
314
+ "loss": 0.9962,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 0.0002015564437074637,
320
+ "loss": 0.8835,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 0.00019964591297103414,
326
+ "loss": 0.9196,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 0.00019778870132130996,
332
+ "loss": 0.8995,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 0.00019598237397554634,
338
+ "loss": 1.0178,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 0.00019422464901683895,
344
+ "loss": 0.9395,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 0.00019251338527170498,
350
+ "loss": 0.9882,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 0.00019084657134227863,
356
+ "loss": 0.9274,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 0.00018922231566536414,
362
+ "loss": 0.9517,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 0.0001876388374866284,
368
+ "loss": 0.865,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 0.00018609445865200715,
374
+ "loss": 0.9314,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 0.00018458759613029606,
380
+ "loss": 0.9224,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 0.00018311675519117857,
386
+ "loss": 0.788,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 0.00018168052317185792,
392
+ "loss": 0.9739,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 0.00018027756377319947,
398
+ "loss": 0.9419,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 0.0001789066118330336,
404
+ "loss": 0.8772,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 0.00017756646853014972,
410
+ "loss": 0.8707,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 0.00017625599697765812,
416
+ "loss": 0.8089,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 0.00017497411816890378,
422
+ "loss": 0.9303,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 0.00017371980724307585,
428
+ "loss": 0.9161,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 0.00017249209004113945,
434
+ "loss": 0.9064,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 0.00017129003992578723,
440
+ "loss": 1.0988,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 0.00017011277484181944,
446
+ "loss": 0.9804,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 0.0001689594545957618,
452
+ "loss": 0.8382,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 0.00016782927833565472,
458
+ "loss": 0.9632,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 0.00016672148221383754,
464
+ "loss": 0.9494,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 0.00016563533721722828,
470
+ "loss": 0.9253,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 0.0001645701471510958,
476
+ "loss": 0.9143,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 0.00016352524676365398,
482
+ "loss": 0.8907,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 0.0001625,
488
+ "loss": 0.9748,
489
+ "step": 80
490
+ }
491
+ ],
492
+ "logging_steps": 1,
493
+ "max_steps": 417,
494
+ "num_train_epochs": 1,
495
+ "save_steps": 10,
496
+ "total_flos": 2.5917530675871744e+16,
497
+ "trial_name": null,
498
+ "trial_params": null
499
+ }
checkpoint-80/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536
checkpoint-90/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: unsloth/llama-2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
checkpoint-90/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/llama-2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "up_proj",
21
+ "down_proj",
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-90/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:351c23da56b4cc54ecd06069484fb435da7dbe8d494862dc600081ac95939f3e
3
+ size 159967880
checkpoint-90/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6fe15fe30435e02f95eae519a4d54f175c25c64f13b10997c9d389880aa095f
3
+ size 80630612
checkpoint-90/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-90/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:422a39896586b55e3cf9fa259c2974dc0869f487be4c61f453a4bc7adf508043
3
+ size 1064
checkpoint-90/trainer_state.json ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.2158273381294964,
5
+ "eval_steps": 500,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.00013,
14
+ "loss": 1.1241,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00026,
20
+ "loss": 1.0107,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00039,
26
+ "loss": 1.1086,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.00052,
32
+ "loss": 1.0044,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.00065,
38
+ "loss": 1.0496,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.0005933661039639299,
44
+ "loss": 1.0199,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0005493502655735357,
50
+ "loss": 1.0198,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0005138701197773616,
56
+ "loss": 0.969,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 0.0004844813951249544,
62
+ "loss": 0.9383,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 0.0004596194077712558,
68
+ "loss": 0.8776,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0004382299106011073,
74
+ "loss": 1.0173,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 0.0004195731958391368,
80
+ "loss": 1.1173,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.03,
85
+ "learning_rate": 0.0004031128874149274,
86
+ "loss": 1.0876,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 0.0003884492980336779,
92
+ "loss": 1.0524,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 0.0003752776749732568,
98
+ "loss": 0.8953,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.04,
103
+ "learning_rate": 0.00036336104634371584,
104
+ "loss": 1.1335,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.04,
109
+ "learning_rate": 0.00035251199395531623,
110
+ "loss": 0.9837,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.04,
115
+ "learning_rate": 0.00034258007985157445,
116
+ "loss": 0.9707,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 0.0003334429644276751,
122
+ "loss": 0.9149,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.05,
127
+ "learning_rate": 0.000325,
128
+ "loss": 1.0043,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "learning_rate": 0.00031716752370827323,
134
+ "loss": 1.001,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.05,
139
+ "learning_rate": 0.00030987534150481746,
140
+ "loss": 1.0395,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.06,
145
+ "learning_rate": 0.000303064062678102,
146
+ "loss": 0.8718,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.06,
151
+ "learning_rate": 0.00029668305198196496,
152
+ "loss": 1.1114,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.06,
157
+ "learning_rate": 0.00029068883707497264,
158
+ "loss": 0.7765,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.06,
163
+ "learning_rate": 0.0002850438562747845,
164
+ "loss": 0.9522,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.06,
169
+ "learning_rate": 0.00027971546389275785,
170
+ "loss": 0.9588,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "learning_rate": 0.00027467513278676785,
176
+ "loss": 1.0313,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.07,
181
+ "learning_rate": 0.0002698978095246549,
182
+ "loss": 0.9338,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.07,
187
+ "learning_rate": 0.000265361388801511,
188
+ "loss": 0.892,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.07,
193
+ "learning_rate": 0.00026104628189331215,
194
+ "loss": 0.893,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.08,
199
+ "learning_rate": 0.0002569350598886808,
200
+ "loss": 0.8983,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.08,
205
+ "learning_rate": 0.00025301215685249496,
206
+ "loss": 0.9277,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.08,
211
+ "learning_rate": 0.00024926362137539537,
212
+ "loss": 0.8962,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.08,
217
+ "learning_rate": 0.00024567690745599767,
218
+ "loss": 0.9124,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.09,
223
+ "learning_rate": 0.0002422406975624772,
224
+ "loss": 0.9535,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.09,
229
+ "learning_rate": 0.00023894475218048754,
230
+ "loss": 0.9019,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.09,
235
+ "learning_rate": 0.0002357797812857538,
236
+ "loss": 1.024,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.09,
241
+ "learning_rate": 0.00023273733406281566,
242
+ "loss": 0.8549,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.1,
247
+ "learning_rate": 0.0002298097038856279,
248
+ "loss": 1.0489,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.1,
253
+ "learning_rate": 0.00022698984612511293,
254
+ "loss": 0.751,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "learning_rate": 0.00022427130678626507,
260
+ "loss": 0.834,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.1,
265
+ "learning_rate": 0.00022164816032790388,
266
+ "loss": 0.889,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.11,
271
+ "learning_rate": 0.00021911495530055366,
272
+ "loss": 1.0103,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.11,
277
+ "learning_rate": 0.00021666666666666666,
278
+ "loss": 0.8766,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.11,
283
+ "learning_rate": 0.0002142986538536308,
284
+ "loss": 0.8181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.11,
289
+ "learning_rate": 0.0002120066237423687,
290
+ "loss": 0.8754,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.12,
295
+ "learning_rate": 0.0002097865979195684,
296
+ "loss": 0.9038,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "learning_rate": 0.00020763488362498048,
302
+ "loss": 0.8646,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.12,
307
+ "learning_rate": 0.00020554804791094464,
308
+ "loss": 0.8836,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.12,
313
+ "learning_rate": 0.0002035228946026736,
314
+ "loss": 0.9962,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.12,
319
+ "learning_rate": 0.0002015564437074637,
320
+ "loss": 0.8835,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.13,
325
+ "learning_rate": 0.00019964591297103414,
326
+ "loss": 0.9196,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.13,
331
+ "learning_rate": 0.00019778870132130996,
332
+ "loss": 0.8995,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.13,
337
+ "learning_rate": 0.00019598237397554634,
338
+ "loss": 1.0178,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.13,
343
+ "learning_rate": 0.00019422464901683895,
344
+ "loss": 0.9395,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.14,
349
+ "learning_rate": 0.00019251338527170498,
350
+ "loss": 0.9882,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.14,
355
+ "learning_rate": 0.00019084657134227863,
356
+ "loss": 0.9274,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.14,
361
+ "learning_rate": 0.00018922231566536414,
362
+ "loss": 0.9517,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.14,
367
+ "learning_rate": 0.0001876388374866284,
368
+ "loss": 0.865,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.15,
373
+ "learning_rate": 0.00018609445865200715,
374
+ "loss": 0.9314,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.15,
379
+ "learning_rate": 0.00018458759613029606,
380
+ "loss": 0.9224,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.15,
385
+ "learning_rate": 0.00018311675519117857,
386
+ "loss": 0.788,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.15,
391
+ "learning_rate": 0.00018168052317185792,
392
+ "loss": 0.9739,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.16,
397
+ "learning_rate": 0.00018027756377319947,
398
+ "loss": 0.9419,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.16,
403
+ "learning_rate": 0.0001789066118330336,
404
+ "loss": 0.8772,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.16,
409
+ "learning_rate": 0.00017756646853014972,
410
+ "loss": 0.8707,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.16,
415
+ "learning_rate": 0.00017625599697765812,
416
+ "loss": 0.8089,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.17,
421
+ "learning_rate": 0.00017497411816890378,
422
+ "loss": 0.9303,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.17,
427
+ "learning_rate": 0.00017371980724307585,
428
+ "loss": 0.9161,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.17,
433
+ "learning_rate": 0.00017249209004113945,
434
+ "loss": 0.9064,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.17,
439
+ "learning_rate": 0.00017129003992578723,
440
+ "loss": 1.0988,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.18,
445
+ "learning_rate": 0.00017011277484181944,
446
+ "loss": 0.9804,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.18,
451
+ "learning_rate": 0.0001689594545957618,
452
+ "loss": 0.8382,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.18,
457
+ "learning_rate": 0.00016782927833565472,
458
+ "loss": 0.9632,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.18,
463
+ "learning_rate": 0.00016672148221383754,
464
+ "loss": 0.9494,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.18,
469
+ "learning_rate": 0.00016563533721722828,
470
+ "loss": 0.9253,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.19,
475
+ "learning_rate": 0.0001645701471510958,
476
+ "loss": 0.9143,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.19,
481
+ "learning_rate": 0.00016352524676365398,
482
+ "loss": 0.8907,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.19,
487
+ "learning_rate": 0.0001625,
488
+ "loss": 0.9748,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.19,
493
+ "learning_rate": 0.00016149379837498482,
494
+ "loss": 0.893,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.2,
499
+ "learning_rate": 0.00016050605945555833,
500
+ "loss": 0.839,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.2,
505
+ "learning_rate": 0.0001595362254439902,
506
+ "loss": 0.9276,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.2,
511
+ "learning_rate": 0.00015858376185413662,
512
+ "loss": 0.8758,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.2,
517
+ "learning_rate": 0.00015764815627361642,
518
+ "loss": 0.9125,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.21,
523
+ "learning_rate": 0.00015672891720538393,
524
+ "loss": 0.955,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.21,
529
+ "learning_rate": 0.00015582557298274985,
530
+ "loss": 0.9104,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.21,
535
+ "learning_rate": 0.00015493767075240873,
536
+ "loss": 0.8861,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.21,
541
+ "learning_rate": 0.0001540647755204926,
542
+ "loss": 0.9693,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.22,
547
+ "learning_rate": 0.0001532064692570853,
548
+ "loss": 0.7245,
549
+ "step": 90
550
+ }
551
+ ],
552
+ "logging_steps": 1,
553
+ "max_steps": 417,
554
+ "num_train_epochs": 1,
555
+ "save_steps": 10,
556
+ "total_flos": 2.9172058829881344e+16,
557
+ "trial_name": null,
558
+ "trial_params": null
559
+ }
checkpoint-90/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:482256ef65b59af088490f9e3870f1b868a90992cd6294900bd43d13ef410480
3
+ size 4536