kcz358 commited on
Commit
cc8102a
·
verified ·
1 Parent(s): 4e73d23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -166
README.md CHANGED
@@ -1,71 +1,28 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
  ## How to Get Started with the Model
71
 
@@ -75,125 +32,90 @@ Use the code below to get started with the model.
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
  [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
  ---
6
 
7
+ # LLaVA Model Card
 
 
 
 
8
 
9
  ## Model Details
10
 
11
+ Model type: LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ Base LLM: meta-llama/Meta-Llama-3-8B-Instruct
14
 
15
+ ### Model Description
16
 
17
+ **Repository:** https://github.com/EvolvingLMMs-Lab/LLaVA-NEXT
18
 
19
+ **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots.
20
 
21
+ **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
22
 
23
+ ### License Notices
24
+
25
+ This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the OpenAI Terms of Use for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. Llama-1/2 community license for LLaMA-2 and Vicuna-v1.5, Tongyi Qianwen RESEARCH LICENSE AGREEMENT and Llama-3 Research License). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
26
 
27
  ## How to Get Started with the Model
28
 
 
32
 
33
  ## Training Details
34
 
 
 
 
 
 
 
35
  ### Training Procedure
36
 
37
+ We conducted the training on LLaVA-1.6's codebase with adding support of Llama-3 and Qwen model.
38
+
39
+ ### Training Hyperparameters
40
+
41
+ ```shell
42
+ LLM_VERSION="meta-llama/Meta-Llama-3-8B-Instruct"
43
+ LLM_VERSION_CLEAN="${LLM_VERSION//\//_}"
44
+ VISION_MODEL_VERSION="openai/clip-vit-large-patch14-336"
45
+ VISION_MODEL_VERSION_CLEAN="${VISION_MODEL_VERSION//\//_}"
46
+
47
+ PROMPT_VERSION=plain
48
+ PRETRAIN_DATA_VERSION="blip558k"
49
+ ############### Pretrain ################
50
+
51
+ BASE_RUN_NAME="llavanext-${LLM_VERSION_CLEAN}-${VISION_MODEL_VERSION_CLEAN}-pretrain_${PRETRAIN_DATA_VERSION}_plain"
52
+ echo "BASE_RUN_NAME: ${BASE_RUN_NAME}"
53
+
54
+ PROMPT_VERSION="llava_llama_3"
55
+ MID_RUN_NAME="llavanext-${VISION_MODEL_VERSION_CLEAN}-${LLM_VERSION_CLEAN}-blip558k_pretrain_plain_la_1_6mix_ft"
56
+ echo "MID_RUN_NAME: ${MID_RUN_NAME}"
57
+
58
+ torchrun # with necessary torchrun information for distributed training\
59
+ llava/train/train_mem.py \
60
+ --deepspeed scripts/zero3.json \
61
+ --model_name_or_path $LLM_VERSION \
62
+ --version $PROMPT_VERSION \
63
+ --data_path="/path/to/data/llava_instruct/llava1_6mix.json" \
64
+ --image_folder /path/to/data/llava_data \
65
+ --pretrain_mm_mlp_adapter="./checkpoints/projectors/${BASE_RUN_NAME}/mm_projector.bin" \
66
+ --mm_tunable_parts="mm_vision_tower,mm_mlp_adapter,mm_language_model" \
67
+ --mm_vision_tower_lr=2e-6 \
68
+ --vision_tower ${VISION_MODEL_VERSION} \
69
+ --mm_projector_type mlp2x_gelu \
70
+ --mm_vision_select_layer -2 \
71
+ --mm_use_im_start_end False \
72
+ --mm_use_im_patch_token False \
73
+ --group_by_modality_length True \
74
+ --image_aspect_ratio anyres \
75
+ --image_grid_pinpoints "[(336, 672), (672, 336), (672, 672), (1008, 336), (336, 1008)]" \
76
+ --mm_patch_merge_type spatial_unpad \
77
+ --bf16 True \
78
+ --run_name $MID_RUN_NAME \
79
+ --output_dir "./checkpoints/${MID_RUN_NAME}" \
80
+ --num_train_epochs 1 \
81
+ --per_device_train_batch_size 4 \
82
+ --per_device_eval_batch_size 4 \
83
+ --gradient_accumulation_steps 1 \
84
+ --evaluation_strategy "no" \
85
+ --save_strategy "steps" \
86
+ --save_steps 3000 \
87
+ --save_total_limit 1 \
88
+ --learning_rate 1e-5 \
89
+ --weight_decay 0. \
90
+ --warmup_ratio 0.03 \
91
+ --lr_scheduler_type "cosine" \
92
+ --logging_steps 1 \
93
+ --tf32 True \
94
+ --model_max_length 8192 \
95
+ --gradient_checkpointing True \
96
+ --dataloader_num_workers 16 \
97
+ --lazy_preprocess True \
98
+ --report_to wandb \
99
+ --torch_compile True \
100
+ --torch_compile_backend "inductor" \
101
+ --dataloader_drop_last True
102
+
103
+ ```
104
 
105
+ ### Training Data
106
 
107
+ - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
108
+ - 158K GPT-generated multimodal instruction-following data.
109
+ - 500K academic-task-oriented VQA data mixture.
110
+ - 50K GPT-4V data mixture.
111
+ - 40K ShareGPT data.
112
 
113
  #### Speeds, Sizes, Times [optional]
114
 
115
+ The training cost is ~15-20 hours on 2 x 8 NVIDIA A100-SXM4-80GB (may vary due to hardware differences).
116
 
117
  [More Information Needed]
118
 
119
  ## Evaluation
120
 
121
+ The evaluation is conducted with the support of [`lmms-eval`](https://github.com/EvolvingLMMs-Lab/lmms-eval)